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Introduction

Linear Algebra and Matrix Analysis are long established mathematical disciplines that play 
a fundamental role in modern applications. Matrices and Hypermatrices appear everywhere 
in data analysis, quantum computing, networks, and scientific computing. In addition, many 
fundamental mathematical problems are still open in these disciplines and many more arise 
every year.

In this scenario, the International Linear Algebra Society (ILAS) is a global professional 
organization solely dedicated to scientists, professionals and educators interested in Linear 
Algebra and its Applications.

Among many other activities, ILAS organizes conferences that, since 1989, have taken place 
over North America, Europe, Asia and South America. These conferences feature high 
profile speakers (including prize winners) that present the latest developments in Linear 
Algebra research along with its wide range of applications. These conferences provide an 
opportunity for linear algebraists all over the world to present their work and to interact 
with members of the community.

�Local Organizing Committee
Luis Miguel Anguas (Saint Louis University)
Roberto Canogar (Universidad Nacional de Educación a Distancia)
Fernando De Terán (Universidad Carlos III de Madrid, Chair)
Froilán M. Dopico (Universidad Carlos III de Madrid)
Ana M. Luzón (Universidad Politécnica de Madrid)
Ana Marco (Universidad de Alcalá)
José Javier Martínez (Universidad de Alcalá)
Manuel A. Morón (Universidad Complutense de Madrid)
Raquel Viaña (Universidad de Alcalá)

Scientific Committee
Raymond H. Chan (City University of Hong Kong)
Fernando De Terán (Universidad Carlos III de Madrid, Chair)
Gianna Del Corso (Università di Pisa)
Shaun Fallat (University of Regina)
Heike Fassbender (Technische Universität Braunschweig)
Elias Jarlebring (KTH Stockholm)
Linda Patton (Cal Poly University)
Jennifer Pestana (University of Strathclyde)
João Queiró (Universidade de Coimbra)
Naomi Shaked-Monderer (Max Stern Yezreel Valley College)
Zdenek Strakos (Charles University)
Daniel Szyld (Temple University, ILAS President)
Raf Vandebril (KU Leuven, ILAS Vice-President for conferences)
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Proceedings
LAA is proud to announce a special issue on the occasion of the 25th Conference of the 
International Linear Algebra Society (ILAS 2023). Papers corresponding to talks given at the 
conference should be submitted by December 1st 2023 via the Elsevier Editorial System. 
Special editors for this ILAS 2023 issue are:
Erin Carson (Charles University)
Fernando De Terán (Universidad Carlos III de Madrid)
Vanni Noferini (Aalto University)
João Queiró (Universidade de Coimbra)
Volker Mehrmann (TU Berlin) is the responsible Editor-in-Chief of LAA for this special issue.  

Sponsors
We would like to thank the following organizations for their direct or indirect support of the 
Conference:

–	� ILAS sponsors the conference and provides support for reception cocktail and the 
overall budget. It also sponsors the Hans Schneider Prize (Nicholas J. Higham), the ILAS 
Taussky-Todd Prize (Stefan Güttel), and the ILAS Richard A. Brualdi Early Career Prize 
(Michael Tait).

–	�E lsevier has provided 5 grants for students’ expenses and another 5 grants for Early 
Career speakers.

–	� SIAM sponsors the SIAG/LA speaker (Elias Jarlebring).
–	�T aylor & Francis supports the LAMA lecturer (Vanni Noferini).
–	� Universidad Complutense de Madrid provides housing at the students’ dormitories.
–	� Universidad Nacional de Educación a Distancia (UNED).
–	� Universidad de Alcalá.
–	� Departamento de Física y Matemáticas de la Universidad de Alcalá.
–	� Sociedad Española de Matemática Aplicada (SeMA).
–	� Departamento de Matemáticas de la Escuela de Montes, Forestales y del Medio Natural 

de la Universidad Politécnica de Madrid.
–	� Saint Louis University.
–	� Universidad Carlos III de Madrid.
–	�A yuntamiento de Madrid, through the Madrid Convention Bureau, provides support for 

the congress visit.
–	� Comunidad Autónoma de Madrid provides the congress kit (bag, pen, notebook, fan, 

and brochures) and support for the congress visit.
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GENERAL INFORMATION

Instructions and suggestions for speakers
–	�A ll talks are 20 minutes long plus 5 minutes for questions and another 5 minutes for 

allowing attendees to move from one room to another.
–	�T here is a computer with a projector in each room for your presentation.
–	�A ll rooms are equipped with white or blackboards.
–	� It is always a good idea to load your presentation in PDF format on a USB stick.

Instructions for chairs
–	�T he chair of the session is responsible for the session to run smoothly.
–	�T he organizers of the minisymposia (or those they delegate on) are expected to chair 

their sessions.
–	�T he chairs are encouraged to be in the room early enough to check that all the speakers 

are present, that all video equipment is working as expected, and that all the speakers’ 
presentations are ready.

–	� Please signal the speaker once the 20 minutes are almost over to allow some minutes 
for questions.

–	� If a speaker does not show up, please do not reschedule the other lectures in the 
session.

Welcome cocktail
There will be a reception cocktail on Monday, at 7pm, right after the end of the lectures. It 
will be held at the venue. All attendees (and accompanying persons) are welcome to the 
cocktail, which is included in the registration fee.

Lunches
As it is customary in ILAS Conferences, lunches are not included in the registration fee, 
and attendees are expected to get it on their own. Besides the canteen of the Escuela de 
Forestales, there are several lunch options near the conference venue. 

Canteens:
–	� Canteen of the Faculty of Biological and Geological Sciences (Facultad de Ciencias 

Biológicas y Geológicas) of UCM. 3’ by foot from the venue.
–	� Canteen of the Centro de investigaciones biológicas Margarita Salas (CSIC). 5’ by foot 

from the venue.
–	� Canteen of the faculty of pharmacy (Facultad de Farmacia) of UCM. 7’ by foot from the 

venue.
–	� Canteen of the faculty of medicine (Facultad de Medicina) of UCM. 11’ by foot from the 

venue.
–	� Canteen of the faculty of journalism (Facultad de Ciencias de la Información) of the 

UCM. 10’ by foot from the venue.
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–	� Canteen of the school of agronomic engineering (ETSIAAB) of UPM. 14’ by foot from 
the venue.

–	� Canteen of the school of aeronautical engineering (ETSIAE) of UPM. 16’ by foot from 
the venue.

All canteens have vegan and vegetarian menus.

Restaurants:
There are several restaurants in C/ Almansa, about 14’ away (by foot) from the venue. 
Another options are:

–	�E l Momento Gastro Bar, P.º de Juan XXIII, 22, 28040. 10’ by foot from the venue.
–	� Cafetería Mara, P.º de Juan XXIII, 15, 28040 Madrid (for a fast food). 9’ by foot from the 

venue.

Conference dinner
The conference dinner will start at 20:30 on Wednesday in La Masía de José Luis (P.º de la 
Prta del Ángel, 3, 28011). The dinner includes a welcome drink with appetizers and a three-
course menu with beverages (wine and water included) and coffee. Those attendees having 
allergies or food restrictions that were not indicated when registering to the conference are 
encouraged to inform the organizers as soon as possible.
There will be an after-dinner speaker.

Excursion
There will be a guided tour on Wednesday, from 6:30pm to 7:30pm (approximately), 
through a neighborhood of Madrid city called the “Madrid de los Austrias” (the “Austrias” 
refers to the dynasty, a branch of the House of Habsburg, that ruled Spain within the XVI 
and XVII centuries). This tour is included in the registration fee, but only those who have 
replied affirmatively to the questionnaire will be allowed to participate.

________________________________________________________________________________

ILAS does not discriminate on the basis of race, color, age, ethnicity, religion, national 
origin, pregnancy, sexual orientation, gender identity, genetic information, sex, 
marital status, or disability. If you have a concern regarding this, please contact the 
conference email: ilas2023@uc3m.es or the ILAS officers whose names are indicated 
at: https://ilasic.org/inclusiveness-statement/
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Abstract
We study Hol(Γ ∪ Int(Γ)), the normed algebra of all holomorphic functions
defined on some simply connected neighborhood of a simple closed curve Γ in C,
equipped with the supremum norm on Γ. We explore the geometry of nowhere
vanishing, point separating sub-algebras of Hol(Γ∪Int(Γ)). We characterize the
extreme points and the exposed points of the unit balls of the said sub-algebras.
We also characterize the smoothness of an element in these sub-algebras by
using Birkhoff-James orthogonality techniques. As a culmination of our study,
we assimilate the geometry of the aforesaid sub-algebras with some classical
concepts of complex analysis and establish a connection between Birkhoff-James
orthogonality and zeros of holomorphic functions.
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Abstract

I will discuss the iterative solution of large linear systems of equations in
which the coefficient matrix is the sum of two terms, a sparse matrix A and a
possibly dense, rank deficient matrix of the form γUUT , where γ > 0 is a param-
eter which in some applications may be taken to be 1. The matrix A itself can
be singular, but I assume that the symmetric part of A is positive semidefinite
and that A+γUUT is nonsingular. Linear systems of this form arise frequently
in fields like optimization, fluid mechanics, computational statistics, finance,
and others. I will investigate preconditioning strategies based on an alternating
splitting approach combined with the use of the Sherman-Morrison-Woodbury
matrix identity. The performance of the proposed approach is demonstrated
by means of numerical experiments on linear systems from different application
areas.
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Abstract

Let Σ = (G, σ) be a signed graph and A(Σ) be its adjacency matrix. The
nullity and cyclomatic number of Σ is denoted by η(Σ) and c(Σ), respectively.
A connected signed graph Σ is said to be cycle-spliced bipartite if every block
is an even cycle. In 2022, Wong, et al., showed for every cycle-spliced bipartite
graph 0 ≤ η(G) ≤ c(G) + 1. In this paper, we extend the results of Wong, et
al., to signed graphs, and prove for every cycle-spliced bipartite signed graph
0 ≤ η(Σ) ≤ c(Σ)+1. Moreover, we prove that there is no cycle-spliced bipartite
signed graph Σ of any order with η(Σ) = c(Σ). W also give a structural charac-
terization of cycle-spliced bipartite signed graphs Σ with nullity η(Σ) = c(Σ)−1.
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Abstract

The talk is concerned with efficient numerical methods for solving a linear
system ϕ(A)x = b, where ϕ(z) is a ϕ-function and A ∈ RN×N . More specifically,

we are interested in the computation of ϕ(A)
−1

b for the case where ϕ(z) =

ϕ1(z) =
ez − 1

z
, ϕ(z) = ϕ2(z) =

ez − 1− z

z2
. A fast numerical algorithm for

computing ψ1(A) and ψ1(A)b with ψ1(z) = 1/ϕ1(z), ϕ1(z) =
ez − 1

z
, has been

presented in [1, 2]. The algorithm exploits a partial fraction decomposition of
the meromorphic function ψ1(z) and it is particularly suited for the application
to structured matrices for which fast linear solvers exist. The same approach
cannot be extended to other functions ψℓ(z) = 1/ϕℓ(z) with ℓ > 1 due to the
lack of explicit closed–form expressions of their poles. In this talk we discuss
some iterative schemes based on the algorithm introduced in [1, 2] for computing

both ϕ2(A)
−1

and ϕ2(A)
−1

b [3]. These schemes relies on Newton’s iteration for
matrix inversion and Krylov-type linear solvers. Adaptations of these schemes
for structured matrices are considered. In particular the cases of banded and
more generally quasiseparable matrices are investigated. Numerical results are
presented to show the effectiveness of our proposed algorithms.
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Towards a more sensible theory of
stability in Numerical Linear Algebra

Carlos Beltrán1, Vanni Noferini2, Nick Vannieuwenhoven3

1 Dpt. MATESCO, Universidad de Cantabria, Spain
E-mail: beltranc@unican.es

2 Dpt. Mathematics and Systems Analysis, Aalto University, Finland
E-mail: vanni.noferini@aalto.fi

3 Dpt. Computer Science, KU Leuven, Belgium
E-mail: nick.vannieuwenhoven@kuleuven.be

Abstract

We are all used to the nowadays quite standard definitions of backward, mixed
and forward stability. But, to which point are these definitions really sound?
Spoiler: this is not a simple question. Here is an even harder to answer one: it
is a basic procedure to use the output of a (presumably) stable algorithm as an
input for another (presumably) stable algorithm. Under which hypotheses can
we grant that the concatenation of both algorithms is itself a stable algorithm?
We will discuss these questions and give reasonable answers to them.

Acknowledgements: Work (partially) supported by Grant PID2020-113887GB-
I00 funded by MCIN/ AEI /10.13039/501100011033, Banco Santander and Uni-
versidad de Cantabria grant 21.SI01.64658, Academy of Finland grant (Suomen
Akatemian päätös 331240), a Postdoctoral Fellowship of the Research Founda-
tion—Flanders (FWO) with project 12E8119N and a FWO Grant for a long
stay abroad V401518N.
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Balancing Inexactness in Matrix
Computations

Erin C. Carson1
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Abstract

On supercomputers that exist today, achieving even close to the peak per-
formance is incredibly difficult if not impossible for many applications. Tech-
niques designed to improve the performance of matrix computations - making
computations less expensive by reorganizing an algorithm, making intentional
approximations, and using lower precision - all introduce what we can generally
call “inexactness”. The questions to ask are then:

1. With all these various sources of inexactness involved, does a given algo-
rithm still get close enough to the right answer?

2. Given a user constraint on required accuracy, how can we best exploit and
balance different types of inexactness to improve performance?

Studying the combination of different sources of inexactness can thus reveal
not only limitations, but also new opportunities for developing algorithms for
matrix computations that are both fast and provably accurate. We present few
recent results toward this goal, involving mixed precision randomized decompo-
sitions and mixed precision sparse approximate inverse preconditioners.

Acknowledgements: Work partially supported by ERC Starting Grant No.
101075632 and the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.
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Randomized sketching of Krylov
methods in numerical linear algebra

Stefan Güttel

Department of Mathematics, The University of Manchester, United Kingdom
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Abstract

Many large-scale computations in numerical linear algebra are powered by
Krylov methods, including the solution of linear systems of equations, least
squares problems, linear and nonlinear eigenvalue problems, matrix functions
and matrix equations, etc. We will discuss some recent ideas to speed up Krylov
methods for these tasks using randomized sketching, and highlight some of the
key challenges for future research.
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Matrix Stories

Nicholas J. Higham
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Abstract

The study of particular matrices has often opened up fruitful research di-
rections in numerical linear algebra and matrix analysis. I will give a variety of
examples of such matrices, describing their properties, their applications, and
stories behind them. I will also describe the Anymatrix project, which makes
these and many other matrices available and easily searchable by properties in
MATLAB.

Acknowledgements: This work was supported by the Royal Society.
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Minimum Number of Distinct
Eigenvalues of Graphs

Shahla Nasserasr
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Abstract

For a graph G on n vertices, let S(G) be the set of all n× n real symmetric
matrices such that their nonzero off-diagonal entries represent the weights of
the edges of G. The inverse eigenvalue problem for a graph G (IEP-G) asks to
determine all possible spectra of matrices in S(G).

A list of positive integers m = (m1,m2, . . . ,mk) is realized as an ordered
multiplicity list for the graph G if there is a matrix in S(G) with k distinct
eigenvalues such that the ith largest eigenvalue has the multiplicity mi, for
i = 1, 2, . . . , k.

One of the relaxations of the IEP-G is to determine the minimum length
among all realizable multiplicity lists of a graph. This parameter is denoted by
q(G) and it is called the minimum number of distinct eigenvalues of G.

In this presentation, we will review interesting advances and techniques from
a number of recent developments regarding q(G).

References

[1] Bahman Ahmadi, Fatemeh Alinaghipour, Michael S. Cavers, Shaun Fallat,
Karen Meagher, and Shahla Nasserasr. Minimum number of distinct eigen-
values of graphs. Electron. J. Linear Algebra, 26: 673–691 (2013).

[2] Leslie Hogben, Jephian C.-H. Lin, and Bryan L. Shader. Inverse problems
and zero forcing for graphs. volume 270 of Mathematical Surveys and Mono-
graphs. American Mathematical Society, Providence, RI, 2022.

[3] Wayne Barrett, Shaun Fallat, H. Tracy Hall, Leslie Hogben, Jephian C.-H.
Lin, and Bryan L. Shader. Generalizations of the strong Arnold property
and the minimum number of distinct eigenvalues of a graph. Electron. J.
Combin., 24(2): Paper No. 2.40, 28, (2017).



25th Conference of the International Linear Algebra Society (ILAS 2023)

66	 Madrid, Spain, 12-16 June 2023

Spectral Turán problems

Michael Tait1

1 Department of Mathematics & Statistics, Villanova University, USA
E-mail: michael.tait@villanova.edu

Abstract

In this talk we will consider a spectral version of the classical Turán problem:
given a fixed graph F , how large can the largest eigenvalue of the adjacency
matrix be over all n-vertex graphs which do not contain F as a subgraph? As
the largest eigenvalue of the adjacency matrix is an upper bound for the average
degree of a graph, any upper bound on this quantity also gives an upper bound
on the Turán number ex(n, F ), and in fact several theorems in this area imply
and strengthen classical results in extremal graph theory. We will discuss recent
progress on this problem including what the similarities and differences between
it and the classical Turán problem are and what future work may be done.

This talk will include joint work with Sebastian Cioabă, Dheer Noal Desai,
Lihua Feng, Liying Kang, Yongtao Li, Zhenyu Ni, Jing Wang, and Xiao-Dong
Zhang

Acknowledgements: Work (partially) supported by National Science Foun-
dation grant DMS-2011553
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The role of the field in some questions
of matrix algebra

Rachel Quinlan
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Abstract

Given a field F and a matrix property P, one can investigate the maximum
possible dimension of a subspace of Mm×n(F) in which every (non-zero) element
has property P, and try to identify those subspaces that attain this maximum.
This formulation provides a rich source of interesting problems, many of which
have a long and influential history. Sometimes the answers to these questions
are independent of the field F, for example if P is an upper bound on rank, or if
m = n and P is nilpotence. Sometimes the answers are highly dependent on F,
for example if P is a lower bound on rank, or if m = n and P is non-nilpotence.
We will discuss the role of field properties in some of these cases.

Fields that are algebraically closed are great for linear algebra, for exam-
ple because every square matrix is similar to a unique Jordan canonial form.
Fields that are real are also very nice, for example because they admit a distinc-
tion between positive and negative elements. Finite fields allow opportunities
for counting. Fields that possess extensions of finite degree are excellent too,
because such an extension is a finite dimensional vector space, with the extra
algebraic machinery of a field multiplcation that plays well with the vector space
structure. If K is a field extension of F of degree n, then K is isomorphic as a vec-
tor space to any other n-dimensional space over F. It follows that any F-vector
space V of dimension n can be endowed with an F-bilinear field multiplication
arising from K.

In the talk, we will consider how this idea can be used to uncover large
subspaces of various matrix spaces in which rank behaves in a controlled way,
specifically over fields which admit cyclic Galois extensions of all degrees. These
fields comprise a broad class, including for example all finite fields and all finite
extensions of Q.
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Root vectors

Vanni Noferini1
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Abstract

Root vectors are a classical, albeit somewhat underappreciated, topic in
linear algebra in the regular case [4, 11]. More recently, they have proven to be
a powerful tool in the singular case as well [1, 2, 8, 9, 10]. In this presentation,
we will explore their applicability in increasingly general situations, including
classical eigenvalue problems, generalized eigenvalue problems [9], polynomial
and rational matrices [1, 2, 4, 10], as well as analytic and meromorphic matrices
[8, 11].

Let us first consider the most basic case of classical eigenvalue problems,
focusing on root vectors that are polynomials. If F is an algebraically closed
field and A ∈ Fn×n has an eigenvalue λ ∈ F, a root polynomial for A at λ of
order � is defined as a vector v(x) ∈ F[x]n such that

(1) (A− xI)v(x) = (x− λ)�w(x) with w(λ) �= 0; (2) v(λ) �= 0.

Such a root polynomial can be seen as a generating function for a Jordan
chain of A at λ. Indeed, if we expand it as v(x) = v0 + v1(x − λ) + v2(x −
λ)2 + v3(x − λ)3 + . . . , then it is easy to see that v0, v1, . . . , v�−1 is a Jordan
chain of length � for A associated with the eigenvalue λ. A kind of converse
statement also holds: for example, if v0, v1, v2 is a Jordan chain of lenght 3
at λ then one has (A − λI)v0 = 0, (A − λI)v1 = v0, and (A − λI)v2 = v1.
Hence, (A − xI)(v0 + (x − λ)v1 + (x − λ)2v2) = (x − λ)3(−v2) so that v(x) =
v0 + (x− λ)v1 + (x− λ)2v2 is a root polynomial of order 3 for A at λ.

One can further extend this idea by constructing maximal sets of root poly-
nomials, which correspond to generating functions for canonical sets of Jordan
chains. This process involves several steps:

1. A set of root polynomials {vi(x)}si=1 at λ for A, of orders �1 ≥ · · · ≥ �s, is
called λ-independent if the constant matrix

[
v1(λ) . . . vs(λ)

]
has full

column rank;

2. A λ-independent set of root polynomials at λ for A is called complete if
there are not λ-independent sets of larger cardinality;

3. A complete set of root polynomials at λ for A is called maximal if it cannot
be modified by replacing one root polynomial with another of larger order
while still maintaining the completeness property.
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It can be proven that the orders of a maximal set of root polynomials are
precisely the partial multiplicities of the eigenvalue λ for the matrix A. Thus,
a maximal set serves as a condensed source of relevant information about the
eigenvalue λ, including partial multiplicities and (generalized) right eigenvectors.

The concept of a maximal set of root vectors, which include root polynomi-
als as a special case, can be extended beyond the classical eigenvalue problem
represented by the pencil A − xI. Specifically, maximal sets of root vectors
exist, and exhibit similar properties to those discussed earlier in the context of
the generalized eigenvalue problem (A + xB), the polynomial eigenvalue prob-
lem (P (x) ∈ F[x]m×n), the rational eigenvalue problem (R(x) ∈ F(x)m×n), and
other nonlinear eigenvalue problems involving matrices over the ring of analytic
functions or the field of meromorphic functions.

All these generalizations, unlike the classical eigenvalue problem, encompass
the singular case. For instance, a pencil A + xB is regular if it is square and
det(A + xB) �≡ 0, while it is singular otherwise. Analogous definitions apply
to polynomial, rational, analytic, and meromorphic matrices. The application
of the concept of a canonical set of Jordan chains becomes problematic in the
singular case, as it is not immediately clear how to extend the definition of eigen-
vectors (let alone chains). However, the notion of a maximal set of root vectors
is flexible enough to adapt to singular (linear or nonlinear) eigenvalue problems.
The starting point is the generalization of the notion of a root polynomial. Sup-
pose M(x) is a minimal basis [3] for the singular pencil A + xB ∈ F[x]1m×n,
and define kerλ(A + xB) as the linear span of the columns of M(λ). Then, a
vector v(x) ∈ F[x] is termed a root polynomial for A+ xB at λ of order � if:

(1) (A+ xB)v(x) = (x− λ)�w(x) with w(λ) �= 0; (2) v(λ) �∈ kerλ(A+ xB).

Maximal sets are then defined similarly to the regular case, with the excep-
tion that for λ-independence one requires

[
M(λ) v1(λ) . . . vs(λ)

]
to have

full rank. It is important to note that, in the regular case (or more gener-
ally when the pencil A + xB has full column rank), the block M(λ) is empty.
One significant application is the rigorous definition of eigenvectors also for
singular pencils: an eigenvector is a nonzero element of the quotient space
ker(A + λB)/ kerλ(A + xB). It should be noted that, if A + xB has full col-
umn rank, then kerλ(A+xB) = {0} is trivial and the conventional definition of
an eigenvector is thus regained. Eigenvectors of singular pencils have numerous
computational applications [5, 6, 7].

Finally, root vectors can also be defined for rational matrices, using a connec-
tion with valuation theory [10], and for analytic (and meromorphic) matrices,
using a connection with module theory [8]. In all these settings, by utilizing
root vectors, eigenvectors can still be defined also for matrices that do not have
full column rank.
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Eigenvalue nonlinearities and
eigenvector nonlinearities

Elias Jarlebring1

1 KTH Royal Institute of Technology, Sweden
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Abstract

The following two generalizations of the standard eigenvalue problem have re-
ceived considerable attention in the numerical linear algebra community: The
eigenvalue nonlinear eigenvalue problem A(λ)x = 0, where A : C → Cn×n is
typically a holomorphic or meromorphic function of the scalar λ, and the eigen-
vector nonlinear eigenvalue problem A(x)x = λx, where either A : Cn → Cn×n

is assumed to be homogeneous, A(αx) = A(x), or we explicitly require a nor-
malization condition, e.g., xHx = 1. We summarize how these problems arise
in applications, for example delay differential equations, acoustics, quantum
physics and data science. Application-driven numerical developments are pre-
sented, as well as a review of general numerical linear algebra, and theoretical
approaches for both types of problems in the context of specific structures.
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Determinantal Representations in
Theory and Applications

Cynthia Vinzant 1

1 Department of Mathematics, University of Washington, Seattle, WA, USA

Abstract

A linear determinantal representation expresses a multivariate polynomial
as the determinant of a square matrix whose entries are linear forms. The study
of determinantal representations dates back to 19th century classical algebraic
geometry and has since found applications in partial differential equations, op-
erator theory, convex optimization, and complexity theory. I will survey some
of the classical and recent theory of determinantal representations with a focus
on applications in linear algebra and matrix theory, including numerical ranges
and the principal minor map.
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Recursion formulas for determinants of
k-Tridiagonal Toeplitz Matrices
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Abstract

As defined in [2], we consider an n × n Toeplitz matrix , T, to be of the form:

Tij =




a ; i = j

b ; |i− j| > k

c ; |i− j| < k

0 otherwise

Toeplitz matrices with its spectral properties are of great essence to physics,
statistics and signal processing. Moreover, Toeplitz matrices help model prob-
lems including computation of spline functions, signal and image processing,
polynomial and power series computations etc. Over the years, there have been
studies on Toeplitz matrices such as recursion of determinants of 2-tridiagonal
Toeplitz matrix [1] and tridiagonal 2-Toeplitz matrices [3]. In our study, we
investigate the determinant of a k-tridiagonal Toeplitz matrices for k > 2. By
extending the work of Borowska et al.[1] , we identified recursion formulas for
determinants of all k− tridiagonals Toeplitz matrices. Thus, we propose to
share our findings at the 2023 ILAS Conference.
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Design of an estimator with orthogonal
projections for a linear regression model

and its strong consistency
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Abstract

This study deals with an application of numerical linear algebra to statistical
analysis. We aim to construct an estimator for a certain type of linear regression
model related to errors-in-variables models that arise in many scientific and en-
gineering computations, such as data fitting problems. Such a regression model
gives rise to the total least squares (TLS) problem or its variants, which can be
solved numerically using the singular value decomposition (SVD). Some total
least squares estimators for the corresponding regression models have strong
consistency in the statistical sense as in [1, 3], where the theory is based on
the consistency analysis of Gleser [2] in 1981. In this talk, we discuss a unified
regression model that covers the above, and then construct a new estimator
with orthogonal projections, leading to a straightforward proof of its strong
consistency.

Acknowledgements: This study was supported by JSPS KAKENHI Grant
Nos. JP17K14143, JP21K11909, and JP22K03422.
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Abstract

Let T be the tropical field R∪ {−∞}, equipped with binary operations a⊕ b =
max{a, b}, a⊗ b = a+b, for a, b ∈ R∪{−∞}. We have studied the convergence
of general matrix power series of the form

∑⊕
i ai ⊗ Ai, in Tropical algebra

(Max-Plus algebra). In that light, we have given a series expansion for matrix
exponent eA, for A ∈ Mn(T). We also have established the relation of matrix
exponent to the eigenvalue-eigenvector problem. A finite vector v (at least one
coordinate of v is finite) is called a generalised eigenvector of A, of order m, if
A(m) ⊗ v = λm ⊗ v, but, A(m−1) ⊗ v ̸= λm−1 ⊗ v (different from an already
existing notion). Further, a matrix A is called quasi-robust if, for any finite
vector x, for some positive integer k, A(k) ⊗ x is a generalised eigenvector of A,
of some order m. We prove that an irreducible matrix is quasi-robust if and
only if it is periodic. Also, for an irreducible square matrix, we have analysed
when its exponent is quasi-robust.

Acknowledgements: The research of the second author was supported by the
University Grant Commission- Ministry of Human Resource Development, New
Delhi, India, through CSIR-UGC fellowship.
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Abstract

Any symmetric matrix M = (mij) ∈ Fn×n over a field F may be associated with
a simple graph G with vertex set [n] = {1, . . . , n} such that distinct vertices i
and j are adjacent if and only if mij ̸= 0. We say that G is the underlying graph
of M . Let S(G) be the set of real symmetric matrices whose underlying graph is
G. We deal with the possible number of distinct eigenvalues of acyclic symmetric
matrices. More precisely, given a tree T , we wish to study the quantity

q(T ) = min{|DSpec(A)| : A ∈ S(T )},

where DSpec(A) denotes the set of distinct eigenvalues of A. In [4] it is proved
that if T is a tree with diameter d and A ∈ S(T ), then q(T ) ≥ d+1. The same
authors suspected that, for every tree T of diameter d, there exists a matrix
A ∈ S(T ) with exactly d + 1 distinct eigenvalues. However, this turns out to
be false. Barioli and Fallat [1] constructed a tree T with 16 vertices such that
diam(T ) = 6, but q(T ) = 8. It is now known that q(T ) = d + 1 for every tree
T of diameter d if and only if d ≤ 5 [3]. For diameter d ≥ 6, it is thus natural
to characterize the trees T for which q(T ) = diam(T ) + 1, which are known as
diameter minimal (or diminimal, for short).

One of the main tools used to address this problem in [3] is the construction
of trees using an operation called branch duplication [2]. The intuition is that,
for any fixed positive integer d, there is a finite set Sd of (unlabelled) trees of
diameter d, called the seeds of diameter d, with the property that any (unla-
belled) tree of diameter d may be obtained from one of the seeds of diameter d
by a sequence of branch duplications. As it turns out, for any tree T of diameter
d there is a single seed of diameter d from which it can be obtained, so that the
seeds are precisely the trees that cannot be obtained from smaller trees through
branch duplication.

In this talk we present a constructive procedure that, given any d ≥ 6 and
any tree T that is obtained from a given set of seeds through branch duplica-
tion, produces a symmetric matrix A ∈ Rn×n with underlying tree T with the
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property that q(T ) = |DSpec(A)| = d + 1. This means that, in addition to
exploring the existence of such a matrix, we also address its computability. In
particular, the procedure allows us to produce such a matrix A with integral
spectrum, i.e., with the property that its spectrum consists entirely of integers.

In a git repository https://github.com/Lucassib/Diminimal-Graph-Algorithm
and https://lucassib-diminimal-graph-algorithm-st-app-0t3qu7.streamlit.app/, read-
ers can access our method.
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Abstract

In this talk we consider families of polynomials that are eigenfunctions of a finite
order differential operator

L ≡
N∑
i=0

ai(x)∂
i
x

More precisely, we consider the Sturm-Liouville problem associated to L

N∑
i=1

ai(x)∂
i
xPn(x) = λnPn(x) , ∀n ∈ N.

where {λn} are the eigenvalues and {Pn} the eigenfunctions.
The aim of this talk is to provide necessary conditions under which transfor-

mations given by P
(1)
n (x) = Pn(x) + γnPn−1(x) give rise to new families of

eigenfunctions of another finite order differential operator L̃ with the same se-
quence of eigenvalues {λn}. In particular, we prove that Darboux transforma-
tions do not always lead to new families of eigenfunctions. The case of Hermite
polynomials is approached.
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Abstract

A signed graph is a pair (G,Σ) where G is an undirected graph (we allow
parallel edges but no loops) and Σ ⊆ E(G). The edges in Σ are called odd and
the other of E even. If (G,Σ) is a signed graph with vertex-set V = {1, . . . , n},
S(G,Σ) is the set of all n × n real symmetric matrices A = [ai,j ] with ai,j > 0
if i and j are adjacent and connected by only odd edges, ai,j < 0 if i and j
are adjacent and connected by only even edges, ai,j ∈ R if i and j are adjacent
and connected by both even and odd edges, ai,j = 0 if i and j are not adjacent,
and ai,i ∈ R for all vertices i. The parameter M(G,Σ) is defined as the largest
nullity of any matrix A ∈ S(G,Σ). In 2021, Arav, Hall, van der Holst, and Li
gave a characterization of 2-connected signed graphs (G,Σ) with M(G,Σ) ≤ 2.
In this talk, we discuss a full characterization of signed graphs (G,Σ) with
M(G,Σ) ≤ 2.
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Abstract

In this work, we expand classical Frobenius results [5] upon consecutive k-th
powers of nonnegative matrices, for a positive integer k ≥ 1, so as to establish
sequences with respect to k of new lower and upper bounds for their spectral
radius. With the aid of the average (k + 1)-row sums and taking the extreme
entries of the matrix, we present new bounds that generalize existing formulae
in [1, 2, 3, 4, 6, 7, 8] and produce new tighter approximations for the spectral
radius.

The monotonicity and convergence properties of the constructed sequences
are explored and certain conditions are stated under which the new bounds are
sharper than the Frobenius’ bounds and other existing formulae. We further
characterize the cases of equality in the aforesaid bounds, when the matrix is ir-
reducible. Throughout, we perform illustrative numerical examples to showcase
the efficiency of our proposed bounds and make comparisons among them.

Acknowledgements: Work supported by “ParICT CENG: Enhancing ICT
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sensor stream, multimedia content, and complex mathematical modeling and
simulations” (MIS 5047244).
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Abstract

According to [4], the distance from a matrix A ∈ Cn×n to the set of matrices
Z which have a prescribed complex number z0 as a multiple eigenvalue is given
by

min
Z∈Cn×n

(1,1)≺≺w(z0,Z)

‖Z −A‖ = max
t≥0

σ2n−1

([
z0In −A tIn

O z0In −A

])
, (1)

where ≺≺ stands for weak majorization and w(z0, Z) denotes the partition in
the Weyr characteristic of z0 as an eigenvalue of the matrix Z.

Our ongoing research (see [1]) tries to generalize (1) under the more restric-
tive condition of (2, 1) ≺≺ w(z0, Z). Indeed, we have already proved that

min
Z∈Cn×n

(2,1)≺≺w(z0,Z)

‖Z −A‖ = max
t≥0

σ2n−2

([
z0In −A tIn

O z0In −A

])
, (2)

except when the function on the right side attains its maximum value only at
t = 0.

Our ultimate goal would be to extend (1) and (2) to the cases where w(z0, Z)
weakly majorizes (k, k) or (k + 1, k), with k ≥ 1.

Acknowledgements: This work is part of project PID2021-124827NB-I00,
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Abstract

For a given class of structured matrices S, we find necessary and sufficient condi-
tions on vectors x,w ∈ Cn+m and y, z ∈ Cn for which there exists ∆ = [∆1 ∆2]
with ∆1 ∈ S and ∆2 ∈ Cn,m such that ∆x = y and ∆∗z = w. We also char-
acterize the set of all such mappings ∆ and provide sufficient conditions on
vectors x, y, z, and w to investigate a ∆ with minimal Frobenius norm. The
structured classes S we consider include (skew)-Hermitian, (skew)-symmetric,
pseudo(skew)-symmetric, J-(skew)-symmetric, pseudo(skew)-Hermitian, posi-
tive (semi)definite, and dissipative matrices, see [2]. These mappings are then
used in computing the structured eigenvalue/eigenpair backward errors of ma-
trix pencils arising in optimal control.

The minimal norm solutions to such doubly structured mappings can be
very handy in the perturbation analysis of matrix pencils arising in control sys-
tems [1, 3]. In particular, for the computation of structured eigenvalue/eigenpair
backward errors of matrix pencils L(z) of the form

L(z) = M + zN :=




0 J −R B
(J −R)∗ 0 0

B∗ 0 S


+ z




0 E 0
−E∗ 0 0
0 0 0


 , (1)

where J,R,E,Q ∈ Cn,n, B ∈ Cn,m and S ∈ Cn,m satisfy J∗ = −J , R∗ = R is
positive semidefinite, E∗ = E, and S∗ = S is positive definite.

Our work is motivated by [3], where the eigenpair backward errors have
been computed while preserving the block and symmetry structures of pencils
of the form L(z), where only the Hermitian structure was considered on R.
The definiteness structure on R describes the energy dissipation in the system
and guarantees the stability of the underlying port-Hamiltonian system. This
makes it essential to preserve the definiteness of R to preserve the system’s port-
Hamiltonian structure. For more details one can have a look on the preprint
the references in [4].
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Abstract

In this talk we explore the antisymmetric tensors, their CP decomposition
and the low-rank approximation algorithms. For a given antisymmetric tensor
A ∈ Rn×n×n we are looking for its low-rank antisymmetric approximation which
is represented via only three vectors. First, we discuss a suitable low-rank format
of the approximation Ã of A,

Ã =
1

6
(x ◦ y ◦ z + y ◦ z ◦ x+ z ◦ x ◦ y − x ◦ z ◦ y − y ◦ x ◦ z − z ◦ y ◦ x),

where x, y, z ∈ Rn. Then we propose an alternating least squares structure-
preserving algorithm for finding such approximation. The algorithm is based on
solving a minimization problem in each tensor mode. We compare our algorithm
with a “naive” idea which uses a posteriori antisymmetrization. Additionally,
we study the tensors with partial antisymmetry, that is, antisymmetry in only
two modes. The algorithms are implemented in Julia programming language
and their numerical performance is examined.

Acknowledgements: Work supported by Croatian Science Foundation under
the project UIP-2019-04-5200.



25th Conference of the International Linear Algebra Society (ILAS 2023)

Madrid, Spain, 12-16 June 2023	 89

On the smallest positive eigenvalue of
bipartite graphs

Sasmita Barik1, Subhasish Behera2, Sukanta Pati3

1 School of Basic Sciences, IIT Bhubaneswar, India
E-mail: sasmita@iitbbs.ac.in

2 School of Basic Sciences, IIT Bhubaneswar, India
E-mail: sb52@iitbbs.ac.in

3 Department of Mathematics, IIT Guwahati, India
E-mail: pati@iitg.ac.in

Abstract

The smallest positive eigenvalue τ(G) of a simple graph G is same as the smallest
positive eigenvalue of its adjacency matrix A(G). Let Gn be the class of all con-
nected bipartite graphs with n = 2m vertices, having a unique perfect matching.
In 1984, Godsil obtained the extremal graph for the minimum smallest positive
eigenvalue in class Gn. Here, we discuss the upper bounds and extremal graphs
for the τ(G), where G ∈ Gn. Further, we talk about the limit points of set Ψ,
where Ψ = {τ(G)|G ∈ G2m,m = 1, 2, . . .}.
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Abstract

Higher Order Dynamic Mode Decomposition (HODMD) is a data-driven
method which can be reinterpreted as an approach to factorise data matrixes
describing the evolution in time of a determined process [1] [2]. It has been tra-
ditionally used in the field of fluid dynamics and to analyse complex non-linear
dynamical systems for the modeling of diverse industrial applications [2] [3]. Re-
cently, HODMD has been applied for the first time to medical image datasets
in [4], suggesting a great potential as a feature extraction technique to iden-
tify characteristic patterns of different heart diseases in echocardiography im-
ages and predict their evolution. Due to the economical acquisition of med-
ical imaging (in special EKG images), it is foreseeable to have to deal with
large databases. Therefore, the necessity to implement HODMD in the medical
field in the most efficient way becomes more important. In this work, sev-
eral strategies to optimize the performance of the HODMD algorithm [4] have
been explored. In particular, diverse implementations of the different compu-
tational kernels controlling the overall performance (eigenvalue decomposition,
and higher order singular value decomposition - HOSVD) have been analysed.
Considering also the actual context in which a tendency to leverage computa-
tional resources from the cloud can be perceived, the use of different computa-
tional architectures has been explored as well. Two databases of echocardiog-
raphy images have been used for the analysis of the different implementations.
The first database has been obtained with respect to a long axis view (LAX),
and the second one with respect to a short axis view (SAX).

Table 1 presents the performance of the HODMD algorithm under different
implementations according to the libraries used when the LAX and SAX images
are used. In all the implementations considered, the relative root mean square
error (RRMSE) of the HODMD reconstruction is negligible (in the order of
1e−14), representing only the machine error. Concerning the computational
cost (represented with the average time of HOSVD t̄HOSVD and the average
time of HODMD t̄HODMD), the implementation using the Torch library and
a standard CPU from a local computer (row named as ’Torch CPU’) is the
most efficient one. This is due to that the associated time for HOSVD t̄HOSVD,
supposing the hardest stage in the HODMD technique, is considerably lower
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than those of the other implementations. Meanwhile, when a high-performance
GPU from the cloud is used (row named as ’Torch GPU’), the computational
cost is a little higher than the case with Torch CPU. This is because no local
resources are employed, which may slow down the algorithm. In addition, a
preload of the data has to be performed prior to HOSVD and HODMD, which
may contribute to the increase of the global time as well.

Table 1: Comparison of the performance of different implementations of the
HODMD algorithm using LAX and SAX medical images.

LAX
Implementation RRMSE t̄HOSVD(s) t̄HODMD(s)

MATLAB 9.22e−14 7.78e+01 2.50e−01
NumPy 8.40e−14 1.84e+02 5.61e−01

Torch CPU 4.37e−14 5.38e+01 1.27e+00
Torch GPU 9.84e−13 6.23e+01 2.87e+00

SAX
Implementation RRMSE t̄HOSVD(s) t̄HODMD(s)

MATLAB 1.27e−14 8.04e+01 2.47e−01
NumPy 5.07e−14 1.83e+02 6.86e−01

Torch CPU 4.87e−14 5.63e+01 2.15e+00
Torch GPU 8.13e−13 6.40e+01 2.51e+00

As a conclusion, among the explored implementations of the HODMD al-
gorithm, the one based on Torch executed with a standard CPU in a local
computer is the fastest. This encourages and motivates the use of free software,
and, thus, open science. As future work, a combination of libraries could be
used with the overarching goal to optimize the computational performance of
the HODMD technique. On the other hand, if a GPU from a local computer
was used, it would be likely to further reduce the computational cost.
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Abstract This paper presents a framework for computing the structure
constrained least squares solutions to the generalized reduced biquaternion

matrix equations. We have looked at three different matrix equations, a linear
matrix equation in one unknown L-structure, a linear matrix equation in

several unknown L-structures, and the general coupled linear matrix equations
in one unknown L-structure. Also, the framework can be adapted to a variety
of applications. Firstly, we find the least squares Toeplitz solutions for the
reduced biquaternion matrix equation (AXB,CXD) = (E,F ). Then, we
derive a purely imaginary solution to the reduced biquaternion matrix

equation AX = E and investigate its application to color image restoration.
Finally, we have utilized our framework to find the structure constrained least
squares solutions to the complex matrix equations. As an illustration, we have
obtained the least squares Hankel solutions to the complex matrix equation
AXB + CY D = E. Moreover, we have used our results to solve partially

described inverse eigenvalue problems, partially described inverse generalized
eigenvalue problems, and partially described inverse quadratic eigenvalue
problems. Our study concludes with algorithms and numerical examples.
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Abstract

The recently renewed surge of interest in quantum computation has moti-
vated (among others) applications to network analysis, where the perspective of
quantum advantage holds promises for efficient treatment of large-scale prob-
lems. One facet of this line of research is the use of quantum walks – as opposed
to classical random walks – in the definition and analysis of centrality measures
for graphs.

In this work we focus on unitary, continuous-time quantum walks (CTQW)
applied to directed graphs. Recall that the time evolution of a CTQW on a
graph is described by the Schrödinger equation

i
∂|ψ(t)〉

∂t
= H|ψ(t)〉, (1)

where |ψ(t)〉 is the state of the system at time t, and H is the Hamiltonian
operator. The evolution operator takes the form U(t) = exp(−itH). Note that
the underlying Hilbert space has dimension equal to the number of nodes, in
contrast to usual setups for discrete-time quantum walks, which require a larger
dimension.

In the directed case, usual choices of Hamiltonian matrices that characterize
the walk dynamics (e.g., the adjacency matrix) are typically not symmetric and
therefore do not directly yield unitary walk operators. We address this diffi-
culty by re-casting classical ranking algorithms, such as HITS and PageRank,
as eigenvector problems for symmetric matrices, and using these symmetric
matrices as Hamiltonians for CTQWs, in order to obtain a unitary evolution
operator.

Note that CTQWs exhibit a dependence on the initial state |ψ(0)〉. There-
fore, the choice of |ψ(0)〉 plays a crucial role in a quantum walk-based ranking
algorithm. Here we experiment with two options: a vector with uniform occu-
pation and a vector weighted w.r.t. in- or out-degrees (for authority and hub
centrality, respectively).

The four new quantum ranking algorithms presented here have been exten-
sively tested and compared to classical HITS and PageRank. Numerical results
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show that, despite some variation in behavior, all the methods are effective in
finding the first and top ten nodes in larger-sized graphs.
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Abstract

As is well known, any complex cyclic matrix A is similar to the unique
companion matrix associated with the minimal polynomial of A. On the other
hand, a cyclic matrix over a division ring F is similar to a companion matrix
of a polynomial which is defined up to polynomial similarity. We will discuss
more rigid canonical forms by embedding a, autor2-article given cyclic matrix
over a division ring F into a controllable or an observable pair. Using the
characterization of ideals in F [z] in terms of controllable and observable pairs we
will consider ideal interpolation schemes in F [z] which merge into a polynomial
interpolation problem containing both left and right interpolation conditions.
The solvability criterion for such a problem is given in terms of certain Sylvester
equation, which also will be discussed in some detail. The talk is based on the
papers [1, 2].
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Abstract
We study Hol(Γ ∪ Int(Γ)), the normed algebra of all holomorphic functions
defined on some simply connected neighborhood of a simple closed curve Γ in C,
equipped with the supremum norm on Γ. We explore the geometry of nowhere
vanishing, point separating sub-algebras of Hol(Γ∪Int(Γ)). We characterize the
extreme points and the exposed points of the unit balls of the said sub-algebras.
We also characterize the smoothness of an element in these sub-algebras by
using Birkhoff-James orthogonality techniques. As a culmination of our study,
we assimilate the geometry of the aforesaid sub-algebras with some classical
concepts of complex analysis and establish a connection between Birkhoff-James
orthogonality and zeros of holomorphic functions.
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Abstract

In this paper we present two algorithms for the reduction of a class of rect-

angular multivariate polynomial matrices to their Smith forms, using the Maple

packages QuillenSuslin and OreModules. The particular resulting Smith

form corresponds to the simplification of an underdetermined linear system of

functional equations to one containing a single equation in one unknown func-

tion. This reduction is known as Serre’s reduction of functional systems.

1 Introduction

Polynomial matrices over R[s], s ≡ d/dt are used to represent linear systems of

ordinary differential equations, see for example [11]. The ring R[s] is a princi-

pal ideal domain with the Euclidean division property and matrices over such a

ring are equivalent to their Smith normal form. However for more general linear

functional systems e.g. partial differential systems or delay-differential systems,

the resulting system matrices are multivariate. Polynomial rings in more than

one indeterminate are not principal ideal rings and matrices over these rings

are in general not equivalent to their Smith forms. Despite its importance in

single variable matrix theory, the Smith normal form in the multivariate case

has received relatively little attention. A few exceptions are [7], [6], [8], [10], and

[3]. The computations involved in the reduction of a given square matrix to its

equivalent Smith form have been set out in [1] using Maple. The main motiva-

tion behind the reduction of a multivariate polynomial matrix to its Smith form

is to be able to reduce the associated system of linear functional equations to a

one containing fewer equations and unknowns. The reduction involved must of
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course preserve relevant system properties. The reduced equivalent representa-

tion simplifies in general the study of such systems. The results on the reduction

to Smith form obtained by the authors mentioned before deal with the case of

square matrices. In this paper we consider the case of rectangular matrices as-

sociated with underdetermined functional systems. The class of systems which

will be dealt with are those equivalent to one involving a single equation in one

unknown. In what follows let D = K[x1, . . . , xn] denote a commutative mul-

tivariate polynomial ring with indeterminates x1, . . . , xn over an arbitrary but

fixed field K.

2 Definitions

Definition 1 Let T ∈ Dq×p, p > q, the Smith form of T is given by

S =
(

diag{Φi} 0
)

(1)

where

Φi =

{
αi/αi−1, 1 ≤ i ≤ r

0, r < i ≤ q,
(2)

r is the normal rank of T , α0 ≡ 1, αi is the gcd of all the i× i minors of T and

Φi’s satisfy the divisibility property

Φ1|Φ2| . . . |Φr. (3)

Definition 2 The general linear group GLp(D) is defined by

GLp(D) =
{
M ∈ Dp×p | ∃N ∈ Dp×p : MN = NM = Ip

}
(4)

An element M ∈ GLp(D) is called a unimodular matrix. It follows that M is

unimodular if and only if |M | ∈ K\{0}.

Definition 3 Let T1 and T2 denote two matrices in Dq×p then T1 and T2 are

said to be (unimodular) equivalent if there exist two matrices M ∈ GLq(D) and

N ∈ GLp(D) such that

T2 = MT1N (5)

Unimodular equivalence has been shown to exhibit fundamental algebraic

properties amongst its invariants. In particular, it preserves the zero structure

of the original matrix which is captured by the determinantal ideals of the

matrix. In fact for the case when D = K[x1], it is well known that every matrix

with elements in D is equivalent to its Smith form. However this result is not

valid for the case when D = K[x1, . . . , xn], n > 1.
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3 Reduction to Smith form by unimodular equiv-

alence

The aim of the reduction is to simplify linear functional systems in the sense

of finding an equivalent presentation which contains only one equation in one

unknown. This generally makes it easier to study the structural properties of

the linear functional system and in some cases can be used to compute its closed-

form solutions. This reduction also finds applications in numerical analysis. The

objective of the equivalence transformation applied on the matrix is to produce

an identity matrix of appropriate size at the top left corner of the original matrix.

Theorem 1 (Section 5 of [5]) Let D = K[x1, . . . , xn] be a commutative poly-

nomial ring over a field K and R ∈ Dq×p a full row rank matrix. Then the

following two assertions are equivalent:

1. The ideal Iq(R) generated by the q × q minors of R is principal, i.e. can

be generated by the greatest common divisor Φ of these minors.

2. There exist R′ ∈ Dq×p, R′′ ∈ Dq×q, and N ∈ GLp(D) such that:

R = R′′R′, det(R′′) = Φ, R′N =
(

Iq 0
)

(6)

Theorem 2 [2] Let D = K[z1, . . . , zn] and T ∈ Dq×p, p > q with full row rank,

then T is equivalent to the Smith form

S =

(
Iq−1 0 0

0 Φq 0

)
(7)

where Φq ∈ D is the gcd of the q × q minors of T , if and only if there exist a

vector U ∈ Dq which admits a left inverse in D such that the matrix
(

T U
)

has a right inverse over D and the ideal generated by the q × q minors of T is

principal.

Proof. Let T ∈ Dq×p and suppose that there exist a vector U ∈ Dq which

admits a left inverse in D satisfying the given condition and that the ideal

generated by the q × q minors of T is principal. Then since U admits a left

inverse in D, there exists a matrix M1 ∈ GLq(D) such that M1U = Eq, where

Eq is the q-th column of Iq. It follows that

M1

(
T U

)
=

(
T1 0

T2 1

)
(8)

where T1 ∈ D(q−1)×p and T2 ∈ D1×p are given by
(

T1

T2

)
= M1T (9)
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Now since the matrix on the RHS of (8) has admits a right inverse over D, it

follows that T1 also admits a right inverse over D, i.e. there exists a matrix

N1 ∈ GLp(D) such that

T1N1 =
(

Iq−1 0
)

(10)

Then, (
T1 0

T2 1

)(
N1 0

0 1

)
=

(
Iq−1 0 0

T3 T4 1

)
(11)

where T3 ∈ D1×(q−1), T4 ∈ D1×(p−q+1) and

(
T3 T4

)
= T2N1 (12)

It follows that

M1TN1 =

(
Iq−1 0

T3 T4

)
(13)

Premultiplying the matrix M1TN1 in (13) by the unimodular matrix

M2 =

(
Iq−1 0

−T3 1

)
(14)

yields the matrix

M2M1TN1 =

(
Iq−1 0

0 T4

)
(15)

Now since the ideal generated by the q × q minors of T is principal, by virtue

of the Lin-Bose Theorem 1, there exists a matrix N2 ∈ GLp(D) with

N2 =

(
Iq 0

0 N̄

)
(16)

such that

M2M1TN1N2 =

(
Iq−1 0 0

0 Φq 0

)
(17)

where T4N̄ =
(

Φq 0
)
.

Conversely assume that T ∈ Dq×p is equivalent to the Smith form

S =

(
Iq−1 0 0

0 Φq 0

)
. (18)

where Φq ∈ D is the gcd of all the ith order minors of T . It follows that there

exist unimodular matricesM ∈ GLq(D) andN ∈ GLp(D) such that S = MTN .
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Now consider the vector U = M−1Eq where Eq is the qth column of In, then

M
(

T U
)(

N 0

0 1

)
= M

(
T M−1Eq

)(
N 0

0 1

)

=
(

MTN Eq

)

=

(
Iq−1 0 0 0

0 Φq 0 1

)
∼

(
Iq 0

)
(19)

i.e. the matrix
(

T U
)
has a right inverse over D. Clearly the ideal of the

q × q minors of S is generated by the unique polynomial Φq ∈ D and therefore

the ideal generated by q × q minors of T is principal.

Example 1 Consider the system of linear delay-differential equations

Tψ(t) = 0 (20)

where ψ(t) =




ψ1(t)

ψ2(t)

ψ3(t)

ψ4(t)


 and the system matrix T is given by

T =




2dσ2 + σ3 + σ2 + 1 dσ2 − dσ + d 2dσ + σ2 dσ2 + dσ + d+ σ2

2dσ + σ2 + σ dσ − d 2d+ σ dσ + d+ σ

2d2σ + dσ2 + dσ + σ d2σ − d2 − 1 2d2 + dσ + 1 d2σ + d2 + dσ




(21)

where D = R [d, σ], d f(t) = ḟ(t), σf(t) = f(t− h) and h ∈ R+. Consider U =

(σ 1 d)T ∈ D3 and P = (T U) ∈ D3×5. Using the package OreModules

in Maple, (see [4]), we can check that P admits a right inverse over D. Also

using Gröbner bases, we can verify that the ideal of the 3 × 3 minors of T is

generated by the polynomial d + σ. It follows that the system in (20,21) is

equivalent to the following simple delay-differential equation:

ẋ(t) + x(t− h) = 0 (22)

Algorithm 1 (OreModules) >

> libname:="OreModules",libname:with(OreModules):with(

LinearAlgebra):

> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[sigma,s],polynom=[t,

s]):

> T:=Matrix(3,4,[2*d*sigma^2+sigma^3+sigma^2+1,d*sigma^2-d*sigma+

d,2*d*sigma+sigma^2,d*sigma^2+d*sigma+d+sigma^2,2*d*sigma+

sigma^2+sigma,d*sigma-d,2*d+sigma,d*sigma+d+sigma,2*d^2*sigma

+d*sigma^2+d*sigma+sigma,d^2*sigma-d^2-1,2*d^2+d*sigma+1,d^2*

sigma+d^2+d*sigma]);U:=<sigma,1,d>;
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T :=




2 dσ2 + σ3 + σ2 + 1 dσ2 − dσ + d 2 dσ + σ2 dσ2 + dσ + σ2 + d

2 dσ + σ2 + σ dσ − d 2 d+ σ dσ + d+ σ

2 d2σ + dσ2 + dσ + σ d2σ − d2 − 1 2 d2 + dσ + 1 d2σ + d2 + dσ




U :=




σ

1

d




Constructing the matrix P = (T | − U),

> P:=<T|-U>;

P :=




2 dσ2 + σ3 + σ2 + 1 dσ2 − dσ + d 2 dσ + σ2 dσ2 + dσ + σ2 + d −σ

2 dσ + σ2 + σ dσ − d 2 d+ σ dσ + d+ σ −1

2 d2σ + dσ2 + dσ + σ d2σ − d2 − 1 2 d2 + dσ + 1 d2σ + d2 + dσ −d




Computing the right inverse of P ,

> Prightinv:=RightInverse(P,A);

Prightinv :=




1 −σ 0

0 0 0

−σ σ2 − d 1

0 0 0

σ −2 d2 − dσ − σ2 − 1 2 d+ σ




Computing a minimal parametrization Q of P ,

> Q:=convert(MinimalParametrizations(P,A)[1],Matrix);

Q :=




−d 0

0 1

dσ 1

1 −1

d+ σ 0




Computing the left inverse of Q,

> LeftInverse(Q,A);

 0 1 0 1 0

0 1 0 0 0




Computing the matrix PQ = [Prightinverse|Q] and checking its determinant,
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> PQ:=<Prightinv|Q>;DetPQ:=Determinant(PQ);

PQ :=




1 −σ 0 −d 0

0 0 0 0 1

−σ σ2 − d 1 dσ 1

0 0 0 1 −1

σ −2 d2 − dσ − σ2 − 1 2 d+ σ d+ σ 0




DetPQ := 1

Extarcting the matrix Q2 and Q1 from Q,

> Q2:=SubMatrix(Q,5..5,1..2);

Q2 :=
[
d+ σ 0

]

> Q1:=SubMatrix(Q,1..4,1..2);

Q1 :=




−d 0

0 1

dσ 1

1 −1




Checking the left inverse of Q1,

> LeftInverse(Q1,A);

 0 1 0 1

0 1 0 0




Computing the SyzygyModule F of Q1,

> F:=SyzygyModule(Q1,A);

F :=


 σ −1 1 0

1 d 0 d




Computing Q3, the right inverse of F ,

> Q3:=convert(RightInverse(F,A),Matrix);

Q3 :=




0 1

0 0

1 −σ

0 0




Constructing the unimodular matrix N = [Q3|Q1] and checking its determinant,
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> N:=<Q3|Q1>;detN:=Determinant(N);

N :=




0 1 −d 0

0 0 0 1

1 −σ dσ 1

0 0 1 −1




detN := −1

Computing the unimodualr matrix M = [T.Q3|U ]−1 and checking its deter-

minant,

> X:=simplify(<T.Q3|U>);DetX:=Determinant(X);

X :=




σ (2 d+ σ) σ2 + 1 σ

2 d+ σ σ 1

2 d2 + dσ + 1 dσ d




DetX := 1

> M:=MatrixInverse(X);

M :=




0 −d 1

1 −σ 0

−σ 2 d2 + dσ + σ2 + 1 −2 d− σ




Finally checking that the product M.T.N yields the Smith form of T ,

> SmT:=simplify(M.T.N);

SmT :=




1 0 0 0

0 1 0 0

0 0 d+ σ 0




Algorithm 2 (QuillenSuslin) >

>libname:="QuillenSuslin",libname:libname:="Involutive",libname:

with(QuillenSuslin):with(LinearAlgebra):

> T:=Matrix(3,4,[2*d*sigma^2+sigma^3+sigma^2+1,d*sigma^2-d*sigma+

d,2*d*sigma+sigma^2,d*sigma^2+d*sigma+d+sigma^2,2*d*sigma+

sigma^2+sigma,d*sigma-d,2*d+sigma,d*sigma+d+sigma,2*d^2*sigma

+d*sigma^2+d*sigma+sigma,d^2*sigma-d^2-1,2*d^2+d*sigma+1,d^2*

sigma+d^2+d*sigma]);U:=<<sigma,1,d>>;vars:=d,sigma;
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T :=




2 dσ2 + σ3 + σ2 + 1 dσ2 − dσ + d 2 dσ + σ2 dσ2 + dσ + σ2 + d

2 dσ + σ2 + σ dσ − d 2 d+ σ dσ + d+ σ

2 d2σ + dσ2 + dσ + σ d2σ − d2 − 1 2 d2 + dσ + 1 d2σ + d2 + dσ




U :=




σ

1

d




vars := d, σ

> p:=RowDimension(T);q:=ColumnDimension(T);

p := 3

q := 4

Checking that the ideal generated by p× p minors of P is principal,

> for i from 1 to 4 do m[i]:=Determinant(DeleteColumn(T,i)) od;

with(Groebner):Basis([seq(m[i],i=1..q)],plex(vars));

m1 := 0

m2 := −σ − d

m3 := σ + d

m4 := σ + d

[σ + d]

Construction the matrix P = [T |U ],

> P:=<T|U>;

P :=




2 dσ2 + σ3 + σ2 + 1 dσ2 − dσ + d 2 dσ + σ2 dσ2 + dσ + σ2 + d σ

2 dσ + σ2 + σ dσ − d 2 d+ σ dσ + d+ σ 1

2 d2σ + dσ2 + dσ + σ d2σ − d2 − 1 2 d2 + dσ + 1 d2σ + d2 + dσ d




Checking that P admits a right inverse,

> IsUnimod(P,[vars],true);

true

Computing unimodular matrix M1 such that M1.U = Ep, where Ep is the p-th

column of Ip and checking that,

> M1:=RowOperation(IdentityMatrix(p),[1,p]).Transpose(QSAlgorithm

(Transpose(U),[vars],true));Check:=M1U=M1.U;

M1 :=




0 −d 1

1 −σ 0

0 1 0



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Check := M1U =




0

0

1




Computing the product M1.P ,

> M1P:=simplify(M1.P);

M1P :=




σ −1 1 0 0

1 d 0 d 0

σ (2 d+ σ + 1) d (σ − 1) 2 d+ σ (σ + 1) d+ σ 1




Extracting the submatrix T1 from M1P ,

> T1:=SubMatrix(M1P,1..p-1,1..q);

T1 :=


 σ −1 1 0

1 d 0 d




Computing the unimodular matrix N1 such that T1.N1 = [Ip−1| 0],

> N1:=QSAlgorithm(T1,[vars],true);Check:=T1N=T1.N1;

N1 :=




d 1 −d −d

−1 0 1 0

−dσ −σ dσ + 1 dσ

0 0 0 1




Check := T1N1 =


 1 0 0 0

0 1 0 0




Checking the product M1.T.N1,

> M1TN1:=simplify(M1.T.N1);

M1TN1 :=




1 0 0 0

0 1 0 0

d σ d+ σ d+ σ




Constructing the elementary row matrix M2 to further reduce tha matrix M1TN1,

> M2:=<<IdentityMatrix(p-1)|ZeroMatrix(p-1,1)>,<-SubMatrix(M1TN1,

p..p,1..p-1)|1>>;

M2 :=




1 0 0

0 1 0

−d −σ 1






25th Conference of the International Linear Algebra Society (ILAS 2023)

108	 Madrid, Spain, 12-16 June 2023

> M2M1TN1:=simplify(M2.M1TN1);

M2M1TN1 :=




1 0 0 0

0 1 0 0

0 0 d+ σ d+ σ




Checking that the ideal generated by the elements of the last row is principal,

> with(Groebner):Phi:=Basis([seq(M2M1TN1[p,i],i=p..q)],plex(vars)

);

Φ := [d+ σ]

> # Lin-Bose Theorems

Extracting the matrix T LB from M2M1TN1,

> T_LB:=SubMatrix(M2M1TN1,p,1..q);

T LB :=
[
0 0 d+ σ d+ σ

]

Applying the Lin-Bose factorization theorem on T LB,

> LinBose1(T_LB,[vars],true);# Factorization

[
[
d+ σ

]
,
[
0 0 1 1

]
]

Applying the Lin-Bose completion theorem on T LB,

> LinBose2(T_LB,[vars],true);# Complete T_LB to a Matrix with det

=Phi=d+sigma




0 0 d+ σ d+ σ

0 1 0 0

1 0 0 0

0 0 −1 0




> # Lin-Bose Conjecture on T_LB

Computing the unimodular matrix N2 such that T LB.N2 = [0|Φ],

> N2:=ColumnOperation(QSAlgorithm(T_LB/Phi[1],[vars],true),[1,q])

;

N2 :=




0 0 1 0

0 1 0 0

−1 0 0 1

1 0 0 0



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> Check:=T_LB.N2;

Check :=
[
0 0 0 d+ σ

]

Computing an column elementary matrix N3 that rearranges the columns,

> N3:=ColumnOperation(IdentityMatrix(q),[1,p]).ColumnOperation(

IdentityMatrix(q),[p,q]);

N3 :=




0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0




The resulting unimodual matrices M and N are thus obtained by:

> M:=M2.M1;N:=N1.N2.N3;

M :=




0 −d 1

1 −σ 0

−σ d2 + σ2 + 1 −d




N :=




d 1 −d 0

−1 0 1 −1

−dσ −σ dσ + 1 −1

0 0 0 1




Finally it is verified that the product M.T.N indeed yields the Smith form of T ,

> SmT:=simplify(M.T.N);

SmT :=




1 0 0 0

0 1 0 0

0 0 d+ σ 0




Conclusion

We have presented two Maple based algorithms for the computation of the Smith

form for a class of rectangular multivariate polynomial matrices. This class of

matrices is associated with underdetermined linear functional systems which are

amenable to be reduced to equivalent representations involving a single equation

in one unknown function. This reduction will in general simplify the solution of

such systems.

Acknowledgements: Work supported by Sultan Qaboos University.
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Locating Eigenvalues of Unicyclic
Graphs
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Abstract

Any real symmetric matrix M = (mij) of order n may be associated with a
simple graphG with vertex set [n] = {1, . . . , n} such that distinct vertices i and j
are adjacent if and only ifmij �= 0. In [1], Jacobs and Trevisan presented a linear
time algorithm on trees to solve a problem that became known as eigenvalue
location for matrices associated with graphs. An algorithm locates eigenvalues
of a symmetric matrix M(G) associated with graphs G in a class C if, for any
graph G ∈ C and any given real interval I, it finds the number of eigenvalues
of M(G) in the interval I. The algorithm in [1] was specifically devised for the
adjacency matrix of trees, but that approach could be extended in a natural
way to arbitrary symmetric matrices associated with trees [2]. In this talk, we
present a linear algorithm (appeared in [3]) that locates the eigenvalues of any
symmetric matrix M(G) of a connected unicyclic graph G. As an application,
we apply this algorithm to study the largest eigenvalue of the Laplacian matrix
of a lollipop graph, which is a unicyclic graph of order n+ k formed by adding
an edge between a cycle Ck of order k and a path Pn of order n.
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Combined matrices of diagonally
equipotent matrices
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Abstract

Let C(A) be the combined matrix of an invertible matrix A. In this work,
we study the combined matrix of a nonsingular matrix which is an H–matrix
whose comparison matrix is singular. In particular, we focus on diagonally
equipotent matrices. Related to these results we give some properties on the
diagonal dominance of these matrices and their comparison matrix.
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Abstract

The numerical range of a matrix has been studied over the complex num-
bers for over a hundred years; interesting properties include that the classical
numerical range is a convex, compact set, invariant under unitary similarity,
and containing the eigenvalues of the matrix. Numerical ranges over finite fields
were first studied by a group of undergraduates [4], which classified the nu-
merical ranges of certain types of matrices over finite fields with certain prime
numbers of elements. Soon afterward, this classification was generalized to all
finite fields Fq2 where q is a prime power [1, 2].

The new setting requires us to revisit classical results and suggests new ques-
tions: what can we say about the geometry of the numerical range, especially
when there is no notion of convexity? what challenges arise since we can now
have vectors v where v∗v = 0? since the setting is finite, what opportunities are
there to enumerate and compare sets? We present progress toward answering
these questions, including a classification for the shape of the numerical range of
2× 2 matrices with certain properties, counting the number of preimages of nu-
merical range elements for these matrices, and infinite sets of higher dimensional
matrices that do not have the entire field Fq2 as the numerical range.
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Simplifying the compensation criteria
for the real nonnegative inverse

eigenvalue problem
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Abstract

The nonnegative inverse eigenvalue problem is the problem of characterizing
all possible spectra Λ = (λ1, λ2, · · · , λn) of entrywise nonnegative matrices. If
Λ is the spectrum of a non-negative matrix, then Λ is said to be a realizable list.

There are three well know methods or rules to convert realizable lists into
realizable lists:

Rule 1: If (ρ, λ2, λ3, . . . , λn) is realizable, where ρ is the Perron eigenvalue and
λ2 is real, then for all ε ≥ 0, the following set is also realizable:

(ρ+ ε, λ2 ± ε, λ3, . . . , λn).

Rule 2: If (ρ, λ2, λ3, . . . , λn) is realizable, where ρ is the Perron eigenvalue,
then for all ε ≥ 0, the following set is also realizable:

(ρ+ ε, λ2, λ3, . . . , λn).

Rule 3: Let Λ1 and Λ2 be realizable sets. Then Λ1 ∪ Λ2 is also realizable.

Rule 1 and 2 were proved by Guo [4], and Rule 3 is trivial since the spectrum
of a block diagonal matrix is the union of the spectra of the diagonal blocks.

The compensation criteria for the real nonnegative inverse eigenvalue prob-
lem was described in [1] as a procedure that starts with a trivial spectra and
builds up realizable lists by applying Rule 1-3. So the set of all possible realizable
lists obtained in this way is defined recursively:

Definition. [1] A list of real numbers (λ1, λ2, · · · , λn) is called C-realizable if
it may be obtained by starting with the n trivially realizable lists (0), (0), · · · , (0)
and then using Rule 1, 2 and 3 any number of times in any order. We also use
the term realizability by compensation to refer to this method.

We will show that using a simplified version of Rule 1 we obtain the same
set of realizable lists. The new simplified Rule is the following:
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Rule 1*: If (ρ, λ2, λ3, . . . , λn) is realizable, where ρ is the Perron eigenvalue
and λ2 ≤ 0 is real, then for all ε ≥ 0, the following set is also realizable:

(ρ+ ε, λ2 − ε, λ3, . . . , λn).

It is important to note that there are two simplifications of Rule 1: first we do
not use the transformation (ρ+ ε, λ2 + ε, λ3, . . . , λn), and second we only apply
the Rule for λ2 ≤ 0.

Clearly, applying the more restrictive Rule 1* instead of Rule 1 we obtain a
subset of C-realizable lists. This new set is called C*-realizable. We are ready
to state our main result:

Theorem. The set of C*-realizable lists and the set of C-realizable lists is the
same.

Acknowledgements: Work funded by the Agencia Estatal de Investigación of
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Jordan structures of an upper block
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Abstract

A totally nonnegative matrix (TN) is a matrix with all its minors nonneg-
ative. These matrices have been studied by several authors and, concretely, in
[1] it is proved that the number of Jordan canonical forms of an irreducible TN
matrix A ∈ Rn×n associated with a triple (n, r, p) is given by the combinatorial
number P p

n−r(n − p), where r is the rank of A, and p its principal rank. That
is, the number of partitions of n − p into exactly n − r parts with the largest
part at most p. Then, the matrix A has n − r zero-Jordan blocks whose sizes
are given by the Segre characteristic of A relative to its zero eigenvalue.

A sequence of integers α = {h1, h2, . . . , hp} ∈ Qp,n is called the sequence of
the first p-indices of A if for j = 2, . . . , p, we have det(A[h1, h2, . . . , hj−1, hj ]) ̸= 0
and det(A[h1, h2, . . . , hj−1, t]) = 0, hj−1 < t < hj . It is known that some
properties that irreducible TN matrices satisfy without prescribed p-indices,
are not satisfied when they are prescribed. If the sequence of the first p-indices
is prescribed, then the number of the zero-Jordan structures admissible for a
realizable triple (n, r, p) is less than or equal to this number when the sequence
is not prescribed.

A method to construct an irreducible TN matrix A is given by the product
A = LU , where L is a lower block triangular matrix and U ∈ Rn×n is an upper
block echelon TN matrix associated with the realizable triple (n, r, p), with the
same zero-Jordan structure and the same sequence of the first p-indices of A
(see [2]). We recall that a matrix is an upper echelon matrix if the first nonzero
entry in each row (leading entry) is to the right of the leading entry in the row
above it and all zero rows are at the bottom. A matrix is upper block echelon if
each nonzero block, starting from the left, is to the right of the nonzero blocks
below and the zero blocks are at the bottom. A matrix is a lower (block) echelon
matrix if its transpose is an upper (block) echelon matrix.

In [2], an upper block echelon TN matrix U can be transformed by similarity
and permutation similarity, into a matrix T = XUX−1, where T is an upper
block triangular matrix such that the size of its blocks depends on the prescribed
sequence of the first p-indices of matrix U. Now, in this work we obtain all
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possible zero-Jordan structure admissible of a matrix T and its relationship with
the zero-Jordan structure admissible of the upper block echelon TN matrix U .
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Linear algebra in the category of linear
systems
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Abstract

Maxwell’s description [7] of flyball governor and the feedback actions to
control steam engines put linear systems and linear feedback actions as main
topic in control engineering. Kalman and Brunovsky’s decomposition theorems
[1] completed description of linear systems up to feedback actions.

A feedback morphism is a linear map between linear systems that preserves
the dynamics. Classical feedback equivalences arise precisely as invertible feed-
back morphisms. Thus feedback classification of linear systems is in fact the
search for S iso where S is the category of systems and feedback morphisms [5].

This talk is intended to introduce linear algebra results in the category SK of
linear systems over an arbitrary field K. Kernels and cokernels of feedback mor-
phisms between reachable systems are computed effectively. Hence we prove
that full subcategory AK of reachable linear systems is pre-abelian [3]. The
category fails to be abelian and hence we don’t have Schur’s lemma [6]. Nev-
ertheless it is interesting to study exact structures [2] on AK in order to obtain
(co)product decompositions of linear systems.
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Total graphs of gain graphs
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Abstract

The total graph of a graph Γ = (V,E) is the graph whose vertex set is V ∪E
and whose adjacencies are inherited from adjacency and incidence relations in
Γ. In particular, it contains as induced subgraphs both a copy of Γ and of the
line graph of Γ. A gain graph (Γ, ψ) is a pair consisting of an underlying graph
Γ and a map ψ, called gain function, from the set of oriented edges to a group
G, called gain group, with the property that to opposite orientations correspond
inverse elements of G.

We give a definition for the total graph of a gain graph (Γ, ψ), that is a gain
graph constructed through G-phases, similarly to what was done in [2, 3] for
the line graph of a gain graph. This construction is well defined, in the sense
that switching isomorphic gain graphs have switching isomorphic total graphs.
Moreover, we characterize the sets (orbits) of G-phases in relation to the gain
functions that they induce on the total graph.

Our construction is consistent with those of the total graph of a signed graph
[4], that in fact can be regarded as a gain graph with G = {±1}. In analogy with
the signed case, we investigate the spectrum of the total graph of a gain graph
over an arbitrary group G. This is possible thanks to the group representation
approach to the spectrum of a gain graph [1].
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Problems related to data analysis in
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Abstract

Since real-life data are non-stationary, it would be better to study them
through non-stationary techniques, and ‘Fast Iterative Filtering’ has proven to
be an interesting and useful method to achieve this goal, especially in classic
1D or 2D cases [1]. But some problems arise in non-Euclidean settings since the
filtering relies on convolution.

After developing a continuous operator we analysed its discretisation through
the Generalised Locally Toeplitz (GLT) sequences of matrices [2]. Using some
property from the GLT theory we studied the convergence of this procedure [3].

In this talk, after a brief review on the topic, we will describe some problems
related to this setting and what we have obtained so far to overcome them. We
conclude our talk with a few examples of applictions of this method to real life
signals.
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Abstract

In this talk we shall give an overview of the main results obtained in [1]
regarding to the monodromy group of Blaschke products of degree 2n.

We shall go over some examples of Blaschke products that can facilitate the
understanding of the monodromy group. Finally, we shall see a sketch proof
of the result that states that for a regularized Blaschke product B that can
be decomposed into n degree-2 Blaschke products, then the monodromy group
associated with B is the wreath product of n cyclic groups of order 2.
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Abstract

The linear complementarity problem, a unified framework for studying various
optimization problems, has a strong connection with semimonotone matrices,
and thus with almost (strictly) semimonotone matrices. The class of semimono-
tone matrices is a generalization of the class of copositive matrices, which con-
tains nonnegative matrices. In this paper, we revisit the class of almost (strictly)
semimonotone matrices and partially address the conjecture made by Wendler
[Special Matrices 7 (2019) 291–303]. We disprove the second part of the conjec-
ture by providing a counter example. The main result of this paper shows that
Wendler’s conjecture is true under the symmetry assumption. We show that a
symmetric almost semimonotone matrix is an almost P0-matrix. We explore
some interesting matrix theoretic properties of almost (strictly) semimonotone
matrices and also present results pertaining to the existence and multiplicity
of solutions to the linear complementarity problem associated with an almost
semimonotone matrix.
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Abstract

We consider the problem of computing a rank-structured approximation to
a symmetric positive definite matrix. Of particular interest are matrices with
off-diagonal low-rank structure or hierarchical off-diagonal low-rank structure
[2]. The latter type of matrices can be factorized in quasi-linear time and have
applications to, e.g., preconditioning [3] and Gaussian process regression [1]. We
formulate the approximation problem as a matrix nearness problem with rank
constraints and derive optimal approximations for several special cases based
on different notions of nearness. We then use these to construct an efficient,
greedy approximation scheme for computing hierarchical off-diagonal low-rank
approximations that preserve positive definiteness. Finally, to illustrate the ad-
vantages and limitations of the methodology, we present some numerical results
from different application areas within data science.
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Abstract

Given a square matrix A, the curve Γ(A) = {x+ iy, x, y ∈ � : f(x, y) = 0},
where f(x, y) is specific cubic polynomial in x, y, is called the shell of A and
it gives interesting eigenvalue localization results. Moreover, it shares (at least
one) common boundary point with the standard numerical range F (A) of A and
satisfies several properties similar to those of F (A).

In one of its forms, Γ(A) consists of a simple unbounded open curve and a
closed branch in the form of a loop which surrounds a unique simple eigenvalue.
If for some θ the curve Γ(eiθA) surrounds an eigenvalue eiθλ0, then, we call λ0 of
A a shell–extremal eigenvalue. Some geometrical aspects of the loop (maximum
distance between boundary points and radius of curvature) are proposed as
measures of the non–normality of this specific eigenvalue. These results are
applied to several classes of matrices.
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Abstract

A result in [1] relating the multivariate Pascal matrix with a generalized
Stirling matrix, is crucial in [2] to solve some linear systems which appear when
computing a b-function of certain ideals in the Weyl algebra. In this talk we
will discuss this together with some other applications of the Pascal matrix in
its symmetric version.
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Abstract

A circulant nut graph is a non-trivial simple graph such that its adjacency
matrix is a circulant matrix whose null space is spanned by a single vector with-
out zero elements. Regarding these graphs, the order–degree existence problem
can be thought of as the mathematical problem of determining all the possi-
ble pairs (n, d) for which there exists a d-regular circulant nut graph of order
n. This problem was initiated by Bašić et al. [Art Discret. Appl. Math. 5(2)
(2021) #P2.01] and the first major results were obtained by Damnjanović and
Stevanović [Linear Algebra Appl. 633 (2022) 127–151], who proved that for
each odd t ≥ 3 such that t ̸≡10 1 and t ̸≡18 15, there exists a 4t-regular circu-
lant nut graph of order n for each even n ≥ 4t + 4. Afterwards, Damnjanović
[arXiv:2210.08334 (2022)] improved these results by showing that there nec-
essarily exists a 4t-regular circulant nut graph of order n whenever t is odd, n
is even, and n ≥ 4t + 4 holds, or whenever t is even, n is such that n ≡4 2,
and n ≥ 4t + 6 holds. Finally, the aforementioned results were extended once
again by Damnjanović, thus yielding a complete resolution of the circulant nut
graph order–degree existence problem. In other words, all the possible pairs
(n, d) for which there exists a d-regular circulant nut graph of order n are now
determined.

Acknowledgements: Work supported by Diffine LLC.
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[7] N. Bašić, M. Knor, R. Škrekovski, On 12-regular nut graphs, Art Discret.
Appl. Math. 5(2) (2021) #P2.01.

[8] M. Filaseta, A. Schinzel, On testing the divisibility of lacunary polynomials
by cyclotomic polynomials, Math. Comput. 73(246) (2003) 957–965.
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Abstract

Parameter dependent quadratic eigenvalue problems (PQEP)

(λ2(v)M + λ(v)D(v) +K)x(v) = 0, (1)

where M and K are n× n Hermitian positive definite matrices and D(v) is an
n×n Hermitian positive semidefinite matrix which depends on a damping (vis-
cosity) parameter vector v ∈ Rk

+, arise in many applications. A perturbation
bound for approximations of eigenvalues of (1) is derived in [2] by using the
dimension reduction method and standard Gerschgorin theorem. In order to
improve damping optimization, we find new perturbation bounds for the eigen-
values of PQEP by extending the results of [2]. The quality and advantages of
the new bounds are illustrated in numerical experiments. We believe that the
new bounds are helpful for the efficient determination of optimal positions of
eigenvalues.
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Abstract

For a connected graph G, the Wiener index, denoted by W (G), is the sum
of the distance of all pairs of distinct vertices and the eccentricity, denoted by
ε(G), is the sum of the eccentricity of individual vertices. In [1], the authors
posed a conjecture that states that given a graph G with at least three vertices,
the difference between W (G) and ε(G) decreases when an edge is contracted
and proved that the conjecture is true when e is a bridge. In this talk, we will
prove that the conjecture is true for any connected graph G with at least three
vertices irrespective of the nature of the edge chosen. We will also mention some
of the ongoing work in this area.
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Abstract

In this talk, we present an extension of the graph parameter max k-cut to
square matrices and prove a general sharp upper bound, which implies upper
bounds on the max k-cut of a graph using the smallest signless Laplacian eigen-
value, the smallest adjacency eigenvalue, and the largest Laplacian eigenvalue
of the graph. In addition, we construct infinite families of extremal graphs for
the obtained upper bounds.
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Abstract

Convolutional codes are error-detecting and correcting codes applied to trans-
mit, detect, and correct the information sent through a channel. In this talk,
we focus on the linear dynamical systems that describe a convolutional code as
a free submodule C ⊂ R[z]n of rank k. In that case, this associated linear dy-
namical system is known as an input/state/output (I/S/O) representation and
it is useful because they allow us to use the structural algebraic properties of
linear systems to work in coding theory

A fundamental issue in convolutional code theory is finding methods to con-
struct convolutional codes with good properties, such as non-propagation of
errors (observability), or performing well when a decoding algorithm is applied.
On the other hand, another desirable property of a convolutional code is that it
has a good distance. In this case, the code will have an optimal recovery rate.

This talk aims to give several algebraic ways to construct observable con-
volutional codes with good decodable properties considering reachable and ob-
servable linear systems with specific properties in the matrices that form them.
Also, we are able to get good distances in the obtained codes. We will study
convolutional codes over finite fields and over certaing commutative rings.
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Abstract

The hitting time of a random walk on a graph G is the expected number
of steps required to reach a marked node starting from a given node or a given
distribution. Hitting time finds a crucial application in search problems, where it
tells us how many steps are needed to detect a marked node. Other applications
are in the analysis of complex networks [1], in the link prediction problem [2],
or in the clustering problem[3].

In a quantum framework, random walks are replaced by quantum walks,
which exhibit peculiar properties. In particular, quantum walks typically tend
to diffuse faster on a graph than classical random walks. One way in which this
remark can be made more precise is through the definition of a quantum notion
of hitting time. We focus in this talk on quantum hitting time for discrete-time
quantum walks.

Usually, quantum hitting time is defined in terms of the stationary distri-
bution π associated with the given graph [4, 5], while the classical hitting time
can be defined in terms of a generic distribution σ. We generalize the notion
of quantum hitting time in terms of a generic distribution emphasizing nalogies
and differences with the case where π is used. We provide conditions for the
quadratic speedup of quantum hitting time over the classical counterpart and
we report the results of numerical experiments on several examples of graphs
both directed and undirected and for several different distributions.

Acknowledgements: Project partially supported by the National Recovery
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Abstract

We introduce a new method - ESPIRA [1] (Estimation of Signal Parame-
ters based on Iterative Rational Approximation) - for the recovery of complex
exponential sums

f(t) =

M∑
j=1

γje
λjt,

that are determined by a finite number of parameters: the order M , weights
γj ∈ C \ {0} and nodes zj = eλj ∈ C for j = 1, ...,M . Our new recovery
procedure is based on the observation that Fourier coefficients of exponential
sums have a special rational structure. To reconstruct this structure in a stable
way we use the AAA algorithm for rational approximation recently proposed
by Nakatsukasa et al. [2]. During the talk we will present results regarding
application of the AAA algorithm to this special recovery problem. We need at
least 2M + 1 Fourier coefficients for the recovery of the exponential sum f(t).
We show that the Fourier coefficients can be also replaced by DFT coefficients
which makes the algorithm more suitable for applications. Furthermore we show
that ESPIRA can be interpreted as a matrix pencil method applied to Loewner
matrices, special construction of which via an adaptive selection of index sets
stabilizes the matrix pencil method (MPM). During the talk we will demonstrate
that ESPIRA strongly outperforms Prony-type methods such as ESPRIT and
MPM for noisy data and for signal approximation by short exponential sums.
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Abstract

The Green matrices is a class of rank structured matrices. By the classical
Asplund theorem inverse to a band matrrix is a Green matrix. Such a matrix
in accordance with the developed in [2] theory admits a quasiseparable repre-
sentation in the corresponding part. Based on the quasiseparable structure we
derive new inversion algorithms for band matrices. The performance of our al-
gorithms is illustrated by the results of numerical tests. The relations obtained
for quasiseparable generators allow also to obtain estimates for decreasing of
the offdiagonal entries of the Green matrices which are inverses of the strongly
diagonally dominant band matrices in terms of the entries of the last ones.
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Abstract

Entropy metrics are one of the most important tool to assess the irregularity
and non-linear behaviour of data. Dispersion Entropy is a non-linear measure of
irregularity used for analysing complex time series [1]. The availability of data
in various fields (including social science, data science or biology) defined on
complex networks has increased the interest of extending entropy metrics from
univariate time series to irregular domains or graphs [2].

This talk will introduce the concept of Dispersion Entropy for Graph Sig-
nals (DEG), and describe the key steps involved in the algorithm, highlighting
how the topological relationships between the graph and signals are leveraged
to extend the classical univariate algorithm to graph signals. DEG is a novel
technique for analysing graph signals that is computationally efficient, robust
to noise, and capable of capturing dynamic patterns in data defined on graphs.

The effectiveness of DEG is demonstrated through several synthetic and real-
world data examples, including MIX processing on Random Geometric Graphs
and small-world networks. The talk will also explore the relationships between
DEG and the combinatorial Laplacian and its spectrum.

Acknowledgements: Work supported by Leverhulme Trust through a Re-
search Project under Grant RPG-2020-158.
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Solving linear systems of the form
(A + γUUT )x = b
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Abstract

I will discuss the iterative solution of large linear systems of equations in
which the coefficient matrix is the sum of two terms, a sparse matrix A and a
possibly dense, rank deficient matrix of the form γUUT , where γ > 0 is a param-
eter which in some applications may be taken to be 1. The matrix A itself can
be singular, but I assume that the symmetric part of A is positive semidefinite
and that A+γUUT is nonsingular. Linear systems of this form arise frequently
in fields like optimization, fluid mechanics, computational statistics, finance,
and others. I will investigate preconditioning strategies based on an alternating
splitting approach combined with the use of the Sherman-Morrison-Woodbury
matrix identity. The performance of the proposed approach is demonstrated
by means of numerical experiments on linear systems from different application
areas.
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equations: a relative error analysis
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Abstract

In this talk, we are going to present how perturbations in the co-efficient ma-
trix A propagate along the solutions of n-dimensional linear ordinary differential
equations {

y′(t) = Ay(t), t ≥ 0,
y(0) = y0.

In other words we are considering the conditioning of the problem

(y0, A) → etAy0

and an asymptotic analysis of condition numbers, as t → +∞, will be given.
The analysis is accomplished for the case where A is normal matrix.

We remark that conditioning of such problems attained less attention in
literature. At the best of our knowledge there are only two papers [1] and [2]
on this topic. These papers present computational aspects of the condition
number. On the other hand our study is more on theoretical aspects of the
condition number. It studies how this condition number depends on the time t
and the initial data y0. Also the asymptotic behavior of condition number as
t → +∞ is part of our study.
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Recovering the Spectrum of a Graph
Having Most of its Eigenvalues Shared
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Abstract

Let G be a simple graph and {1, 2, . . . , n} be its vertex set. The polynomial
reconstruction problem asks the question: given a deck P(G) containing the n
characteristic polynomials of the vertex deleted subgraphs G−1, G−2, . . . , G−n
of G, can ϕ(G, x), the characteristic polynomial ofG, be reconstructed uniquely?
To date, this long-standing problem has only been solved in the affirmative for
some specific classes of graphs. We prove that if there exists a vertex v such
that more than half of the eigenvalues of G are shared with those of G−v, then
this fact is recognizable from P(G), which allows the reconstruction of ϕ(G, x).
To accomplish this, we make use of determinants of certain walk matrices of
G. Our main result is used, in particular, to prove that the reconstruction
of the characteristic polynomial from P(G) is possible for a large subclass of
disconnected graphs, strengthening a result by Sciriha and Formosa.
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Is there a Kemeny’s constant for
second-order random walks?
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Abstract

Kemeny’s constant for the random walk on a (possibly directed) graph is the
expected number of timesteps the walker takes to travel between any two nodes
sampled using the stationary distribution. That constant provides valuable
information on the navigability of the graph and depends on the eigenvalues of
the transition matrix of the associated Markov chain.

In a second-order random walk, transition probabilities depend on two past
states and are encoded into a stochastic tensor. Such a process can be turned
into a Markov chain by ‘lifting’ the state space from the graph nodes to the
directed edges. This procedure naturally produces a Kemeny’s constant for
the lifted Markov chain as done, for example, in [1] for non-backtracking walks
on regular graphs. However, that constant does not immediately yield new
knowledge on the second-order walk in the original network.

The main goal of this talk is to show that the average travel times for the
lifted chain can be ‘pulled back’ in some sense to the original graph, producing
sound definitions for the average travel times of the second-order walker [2]. For
the eager ones who want a spoiler, the answer to the question in the title is:
well, almost so.
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Number of non-isomorphic graphs
obtained from a tree by switches
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Abstract

Let G be a simple graph and x, y, z, w be 4 vertices of G. A switch in G
is the replacement of the edges {x, y} and {z, w} of G by the edges {x, z} and
{y, w}, given that {x, z} and {y, w} were not present in G originally. Two
simple graphs have the same degree sequence if and only if there is a sequence
of switches that transforms one into another. The number S(G) is the number
of non-isomorphic graphs that have the same degree sequence as G, in other
words, that are obtained from G by switches. The S(G)-switch-graph class is
the class whose elements, the S(G)-switch-graphs, are the simple graphs H with
S(H) = S(G). In this talk we describe the trees that are k-switch-graphs, for
1 ≤ k ≤ 5.
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Symmetrization Techniques in Image
Deblurring
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Abstract

This talk focuses on preconditioning techniques that enhance the perfor-
mance of iterative regularization methods in image deblurring. The precondi-
tioners are applied to problems with different point spread functions (PSFs)
and boundary conditions [1]. More precisely, we first consider the anti-identity
preconditioner [3], which symmetrizes the coefficient matrix associated to prob-
lems with zero boundary conditions, allowing the use of MINRES as a regu-
larization method. When considering more sophisticated boundary conditions
and strongly nonsymmetric PSFs, the anti-identity preconditioner improves the
performance of GMRES. We present both stationary and iteration-dependent
regularizing circulant preconditioners that speed up the iterations when ap-
plied in connection with the anti-identity matrix and both standard and flexible
Krylov subspaces [2]. A theoretical result about the clustering of the eigenval-
ues of the preconditioned matrices is proved in a special case [1]. The results of
many numerical experiments are illustrated to show the effectiveness of the new
preconditiong techniques, including when considering the deblurring of sparse
images.
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Abstract

In this talk we will consider additive models

Y = Xβ +
w∑
i=1

XiZi,

where the Y has n observations, X,X1, ...,Xw are given matrices and β is
a vector with fixed coefficients. The random vectors Z1, ...,Zw are indepen-
dent, with c1, ..., cw i.i.d. (independent and identically distributed) compo-
nents with r-th order cumulants χr,i, r = 1, 2, 3, 4, ..., i = 1, ..., w. We assume
that χ1,i = χ3,i = 0, i = 1, ..., w, that is the distributions of components
Zi,l, l = 1, ..., ci, i = 1, ..., w, are cumulant symmetric, which means that they
have null odd-order moments relative to the origin. We will show that from the
symmetry of the distributions of the components of Zi, i = 1, ..., w results the
symmetry of the distributions of their linear combinations. We also present the
adjustment of our models to estimate the parameters distributions.

Acknowledgements: Work (partially) supported by the Portuguese Founda-
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2020 and UIDP/MAT/00297/2020.
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Abstract

The main focus of the talk is on efficient multigrid methods for large linear
systems with a particular saddle-point structure. In these problems the system
matrix is symmetric, but indefinite, so the variational convergence theory that
is usually used to prove multigrid convergence cannot be directly applied [6]. In
most cases more powerful smoothers are used to take into account the special
coupling, represented by the off-diagonal blocks [3, 4]. Alternatively, instead of
altering the smoother, recently [5] a different algebraic approach that analyzes
properly preconditioned saddle-point problems has been presented.

In the present talk we analyze saddle-point problems where the blocks are
both circulant and Toeplitz-like within this framework. Such structured matrix
sequences are associated to a function called symbol. We are able to derive
sufficient conditions for the multigrid convergence in terms of the associated
symbols, which are also useful for tuning the multigrid parameters [2].

Moreover, we present how it is possible to extend the analysis to the block
setting, that is, to structured matrices generated by a matrix-valued function.
The illustrative example is the linear system stemming from the Finite Element
approximation of the Stokes problem [1].

Finally, we present several numerical tests to show the efficiency of the ap-
proach also with a comparison with the state-of-the-art strategies.
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Generating efficient vectors for pairwise
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Abstract

In this talk we focus upon the pairwise comparison (PC) matrix (also called
reciprocal matrix) component of the often discussed Analytic Hierarchy Process
and its approximation by a consistent matrix formed from an efficient vector.

We give a method of inductively generating efficient vectors for any given
PC matrix.

It is known that the entry-wise geometric mean of all columns is efficient for
any PC matrix. The relationship between any set of columns of the PC matrix
and efficient vectors is explored.
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Abstract

The weighted geometric mean is defined by A�tB := A
1
2

(
A− 1

2BA− 1
2

)t

A
1
2 for

positive operators A,B and 0 ≤ t ≤ 1. The weighted spectral geometric mean
was defined in [1] by

A�tB =
(
A−1�B

)t
A
(
A−1�B

)t
, 0 ≤ t ≤ 1.

In this talk, we give two different operator inequalities between the weighted
spectral geometric mean A�tB and the weighted geometric mean A�tB. We
study the mathematical properties for the generalized Kantorovich constant for
0 < m < M and t ∈ R:

K (m,M, t) =
(mM t −Mmt)

(t− 1) (M −m)

(
t− 1

t

M t −mt

mM t −Mmt

)t

.

Employing the shown properties, we give the ordering of two inequalities.
In addition, we give some inequalities such as Ando type inequality, Kan-

torovich type inequality, and Ando–Hiai type inequality with the weighted spec-
tral geometric meanA�tB and the generalized Kantorovich constantK (m,M, t).

Our talk is mainly based on the results in [2]. We will also show new results
related to the weighted spectral geometric mean A�tB and/or the weighted
geometric mean A�tB.
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Abstract

Discrete and continuous frames can be considered as positive operator-valued
measures (POVMs) that have integral representations using rank-one operators.
However, not every POVM has an integral representation. One goal of this
paper is to examine the POVMs that have finite-rank integral representations.
More precisely, we present an necessary and sufficient condition under which a
positive operator-valued measure F : Ω → B(H) has an integral representation
of the form

F (E) =
m∑

k=1

∫

E

Gk(ω)⊗Gk(ω)dµ(ω)

for some weakly measurable maps Gk (1 ≤ k ≤ m) from a measurable space Ω
to a Hilbert space H and some some positive measure µ on Ω. Similar charac-
terizations are also obtained for projection-valued measures. In particular, we
show that an integral representable probability POVM can be dilated to a in-
tegral representable projection-valued measure if and only if the corresponding
measure is purely atomic.
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25th Conference of the International Linear Algebra Society (ILAS 2023)

152	 Madrid, Spain, 12-16 June 2023

Decompositions of matrices into torsion
matrices and zero-square matrices

Peter V. Danchev1, Esther Garćıa2, Miguel Gómez Lozano3
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Abstract

Recall that a square matrix A is called a torsion matrix if there exists some
natural number n such that An is the identity matrix. We study when a square
matrix over a field can be decomposed as the sum of a torsion matrix and a
nilpotent matrix of order at most two. We present several examples that show
that the decomposition does not hold in general, and we give necessary and
sufficient conditions to get this decomposition for nilpotent matrices.
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Abstract

We analyze self-dual polyhedral cones and prove several properties about
their slack matrices. In particular, we show that self-duality is equivalent to the
existence of a positive semidefinite (PSD) slack. Beyond that, we show that if
the underlying cone is irreducible, then the corresponding PSD slacks are not
only doubly nonnegative matrices (DNN) but are extreme rays of the cone of
DNN matrices, which correspond to a family of extreme rays not previously
described. More surprisingly, we show that, unless the cone is simplicial, PSD
slacks not only fail to be completely positive matrices but they also lie outside
the cone of completely positive semidefinite matrices. Finally, we show how one
can use semidefinite programming to probe the existence of self-dual cones with
given combinatorics.
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Abstract

The solution of the incompressible Navier-Stokes (NS) equations is crucial
across many scientific and technological fields, namely aerodynamics, water or
oil transport, and biological flow modelling. Cardiovascular blood flow mod-
eling is becoming crucial due to the increased risk of cardiovascular diseases.
In this contribution, we address the challenges and opportunities brought for-
ward by the numerical simulation of left ventricular (LV) blood flow, which is
now becoming feasible due to advances in numerical methods and computing
power. It is accepted that many cardiovascular diseases occur due to abnormal
functioning of the heart, which lead to severe complications and mortalities.
Computational fluid dynamics (CFD) has the potential to assist in early di-
agnosis and treatment of heart diseases by analysis of blood flow patterns in
patient-specific heart models.

The NS equations are very difficult to solve analytically due to their highly
non-linear, non-homogenous second-order nature and the non-trivial coupling
of momentum and mass conservation. Using the finite volume method, we
discretize the NS partial differential equations into a grid of smaller control
volumes. The NS equations are integrated over these grids by enforcing the
conservation of mass and momentum principles. Gradients of flow variables are
calculated at cell faces by using central difference, upwind schemes, or higher
order schemes. Appropriate boundary conditions are incorporated at grid faces.
The discrete algebraic equations, which are non-linear due to convective terms,
are solved typically using SIMPLE method to disentagle the pressure-momenta
coupling. The resulting linear equations are solved using the iterative Gauss-
Seidel method until a convergence criterion is fulfilled.

More specifically, in this work, we have simulated a patient-based left ven-
tricle (LV) model to understand the flow patterns in healthy left ventricles.
Forming an asymmetric vortex in a healthy LV shows an efficient way of blood
transport from LV to various body parts. The vortex patterns in the LV have
been analyzed using velocity streamlines, wall shear stress, and vorticity. We
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conclude that understanding vortex dynamics in LV and various vortex indexes
can be used as an early diagnosis tool and improvement of heart disease treat-
ment. Further, vortex indexes can be used to analyze the outcomes of various
heart surgeries.

Keywords: Navier-Stokes equations, computational fluid dynamics (CFD),
vortex dynamics, Left ventricle (LV).

Acknowledgements: This work is supported by Grant No. TED2021-129774B-
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Abstract

In this talk, we present two types of efficient parallel high-resolution algo-
rithms for the solution of a subsurface electromagnetic scattering problem. The
first method is based on a partial FFT-type approach (PFFT) where the direct
solution of the 3D Helmholtz equation with Sommerfeld-like boundary condi-
tions relies on a sequence of FFT solutions with Dirichlet, Neumann, or periodic
boundary conditions. The key part of the second algorithm is the solution of
two one-dimensional eigenvalue problems that ensure the fast and scalable direct
solution of the 3D layered Helmholtz equation.

The 3D Helmholtz equation is discretized by high-order compact finite-
difference schemes. The resulting layered systems of finite-difference equations
are solved by two proposed direct methods. The systems that include the three-
dimensioned subsurface inclusions are solved by iterative preconditioned Krylov
subspace-based methods. The PFFT-based preconditioner and low-dimensional
eigenvectors solvers are used for efficient implementation of the developed iter-
ative approach.

The complexity and scalability of the methods are analyzed on scattering
problems with realistic ranges of parameters in soil and mine-like targets.
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Abstract

We examine the quantum channels that preserve and also separate the or-
bits of pure states under the action of a group unitary representation π. Such a
quantum channel will be called π-orbit injective. We prove that for finite group
and complex Hilbert space cases, such a channel necessarily separates all the
pure states. However, this is no longer true for quantum channels acting on
real Hilbert spaces, or quantum channels acting on complex Hilbert spaces with
(infinite) compact group representations. In both cases, we obtain necessary
and/or sufficient conditions under which the quantum channel is orbit injective.
These conditions are given in terms of the so called property (H) of characters
(more generally, irreducible representations) of the group, and characterizations
of property (H) are presented for real and complex valued multiplicative char-
acters.

Acknowledgements: Work (partially) supported by the NSF grant DMS-
2105038
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Abstract

The need for environmentally friendly solutions has led to a significant focus
on developing more efficient and less polluting aeronautical designs. However,
traditional methods for testing these designs using simulations and experiments
can be expensive and time-consuming. The developed approach is based on
modal decomposition, deep learning [1, 2], and algebraic principles, including
solving eigenvalue problems, rotations, and translations using singular value de-
composition (SVD) and higher-order dynamic mode decomposition (HODMD)
[3]. By leveraging these techniques, it is possible to identify the physical prop-
erties associated with fluid dynamics problems, specially turbulent flows, re-
construct corrupted data from sensors, and generate reduced-order models for
accelerated computational fluid dynamics simulations. This approach offers a
cost-effective solution to traditional design and testing methods and has demon-
strated promising results on datasets, including a three-dimensional cylinder and
two concentric jets. With its potential for future industrial applications, this
method will be capable of providing environmentally friendly solutions.
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Abstract

Canonical forms are an integral part of matrix theory. From the Jordan
canonical form for square matrices under similarity and the Kronecker canonical
form for matrix pencils under strict equivalence to the Smith canonical form
for matrix polynomials under unimodular equivalence, the discovery of new
canonical forms can lead to significant advances in new theory. We propose a
new canonical form for strictly regular matrix polynomials under unimodular
equivalence that not only has many of the features of existing canonical forms,
but also has the property that the degree of the matrix polynomial is preserved.

In the last several decades, much work has been done to try to emulate the
Kronecker canonical form for higher degree matrix polynomials, particularly
the quadratic case [?, 2, 3, 4]. In [1], the authors construct a Kronecker-like
canonical form for quadratic matrix polynomials, but the result is somewhat
complicated. It is suspected that the complexity of Kronecker-like canonical
forms will grow untractably with the degree of the matrix polynomial. In this
talk, we present a new strategy for constructing canonical forms for matrix
polynomials of arbitrary degrees, and the resulting canonical form for strictly
regular polynomials.
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Abstract

It is well known in the literature that Sobolev-type orthogonal polynomials on
the real line satisfy higher-order recurrence relations, and these can be expressed
as a (2N + 1)–banded symmetric semi-infinite matrix. In this talk, we analyze
the connection between these (2N + 1)–banded matrices, and the Jacobi matri-
ces associated with the three-term recurrence relation satisfied by the standard
2-iterated Christoffel sequence of orthonormal polynomials with respect to cer-
tain positive Borel orthogonality measure dµ(x).
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of the Comunidad de Madrid (Spain), and Universidad de Alcalá under grants
CM/JIN/2019-010 and CM/JIN/2021-014, Proyectos de I+D para Jóvenes In-
vestigadores de la Universidad de Alcalá 2019 and 2021, respectively. The
work of FM has been supported by FEDER/Ministerio de Ciencia e Innovación-
Agencia Estatal de Investigación of Spain, grant PGC2018-096504-B-C33, and
the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual
Agreement with UC3M in the line of Excellence of University Professors, grant
EPUC3M23 in the context of the V PRICIT (Regional Programme of Research
and Technological Innovation).
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Abstract

Many functions that are worth approximating map into Riemannian man-
ifolds, spaces equipped with a notion of distance derived from an inner prod-
uct on their tangent space. We present a construction using Riemann normal
coordinates for approximating such functions. Our construction extends ap-
proximation techniques for functions between linear spaces, like Adaptive Cross
Approximation or Chebyshev interpolation, in such a way that we are able to
upper bound the max error in terms of a lower bound on the manifold’s sectional
curvature. Furthermore, when the sectional curvature is nonnegative, e.g. as for
compact Lie groups, the mean error is also bounded.

Of special interest are manifolds that are not naturally embedded into a
vector space or whose codimension is large. The Segre manifold of rank 1 tensors
is an example of such a manifold where we are able to apply our construction.
Approximating functions that map to the Segre manifold has applications in
Model Order Reduction and tensor completion.[1]

In some cases, the condition number of approximating functions that map
into manifolds is guaranteed to be exponential in the radius of the domain. We
classify and discuss those cases.

This is joint work with Raf Vandebril (KU Leuven), Joeri Van der Veken
(KU Leuven), and Nick Vannieuwenhoven (KU Leuven).
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Abstract

We present a work considering arrowhead and diagonal-plus-rank-one ma-
trices in Fn×n where F ∈ {R,C,H}. H is a non-commutative field of quater-
nions. All the presented formulas (matrix-vector multiplications, determinants,
inverses) are unified in the sense that the same formula holds in both, commu-
tative and noncommutative algebras. Each formula requires O(n) arithmetic
operations. Most of the formulas hold for block matrices, as well. We also
present an algorithm for the eigendecomposition computation of arrowhead and
diagonal-plus-rank-one matrices of quaternions. The code, written in the pro-
graming language Julia, along with examples, is available on GitHub. The code
relies on the Julia’s polymorphism feature.

Acknowledgements: This work has been fully supported by Croatian Science
Foundation under the project IP-2020-02-2240.
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Abstract

Given proper cones K1 and K2 in Rn and Rm, respectively, an m×n matrix
A with real entries is said to be semipositive if there exists a x ∈ K◦

1 such
that Ax ∈ K◦

2 , where K◦ denotes the interior of a proper cone K. This set is
denoted by S(K1,K2). The purpose of this talk is to bring out the structure of
an invertible linear map L on Mm,n(R) that preserves the set S(Rn

+,Rm
+ ). This

talk is based on [1].
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Abstract

Many researchers [1, 2] studied the quantum divergences associated with
Kubo-Ando means, which are given by

Φ(A,B) = tr[(1− t)A+ tB −AσtB)],

where AσtB is a Kubo-Ando mean with the weight 0 < t < 1. On the other
hand, there are many non Kubo-Ando means such as the generalized mean
Qt(A,B) = ((1 − t)Ap + tBp)1/p for −1 ≤ p ≤ 1, the log-Euclidean mean
LEt(A,B) = exp((1 − t) logA + t logB) and the Wasserstein mean A ⋄t B =
(1− t)2A+ t2B + t(1− t)[A(A−1#B) + (A−1#B)A] for 0 < t < 1.

In this talk, we consider a new quantum divergence for 0 < t ≤ 1/2

Φt(A,B) = tr[(1− t)A+ tB −A♮tB]

associated with the spectral geometric mean A♮tB = (A−1#B)tA(A−1#B)t,
which is a non Kubo-Ando mean. Note that for t = 1/2, Φ1/2(A,B) =

tr

(
A+B

2
−A♮1/2B

)
is same as the square of the Bures-Wasserstein distance.

Then we study the barycenter of the quantum divergence Φt with some prop-
erties, minimizing the weighted sum of divergences.

Acknowledgements: This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No. NRF-2022R1A2C4001306).
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Abstract

A matrix A ∈ Rn×n is called a Z-matrix, if all the off-diagonal entries of
A are nonpositive. Any Z-matrix A has the representation A = sI − B, where
s ≥ 0 and B is an entrywise nonnegative matrix. If s is at least the spectral
radius ρ(B) of B, then A is called an M -matrix. Let s = ρ(B), above. Then A
is a singular M -matrix. It is well known that if, in addition, A is irreducible,
then A has the following property: the only nonnegative vector that belongs to
the range space of A is the zero vector. In this talk, a discussion of analogues
of this result, for the Lyapunov and the Stein operators, on the Hilbert space
of real symmetric matrices, will be presented.
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Abstract

We denote the set of Blaschke products of degree m by

Bm :=


γ

m
j=1

z − aj
1− ajz

: γ, a1, . . . , am ∈ C, |γ| = 1, |a1|, . . . , |am| < 1


 .

Here, B0 consists of constants (with modulus 1). We also write

B≤m := ∪m
k=0Bk.

In this talk, we discuss an alternative proof of the Jones-Ruscheweyh theorem
[1].

Theorem 1. Let 0 ≤ φ1 < φ2 < . . . < φm < 2π and ψ1, ψ2, . . . , ψm ∈
[0, 2π). Then there exists a Blaschke productB ∈ B≤m−1 such thatB(exp iφj) =
exp iψj , j = 1, 2, . . . ,m.

The approach is based on direct solution of the equations. To be more pre-
cise, the original equations are transformed into a system of polynomial equa-
tions with real coefficients. This leads to “geometric representation” of Blaschke
products. Then, a Positivstellensatz by Prestel and Delzell [2] and a represen-
tation of positive polynomials in a special form due to Berr and Wörmann [3]
together with a particular structure of the equations are used.

This is based on a joint work with Béla Nagy.
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Abstract

Let p1, p2, · · · , pn be distinct positive real numbers and m be any integer.
Every symmetric polynomial f(x, y) ∈ C[x, y] induces a symmetric matrix
[f(pi, pj)]

n
i,j=1 . We obtain the determinants of such matrices with an aim to find

the determinants of Pm = [(pi + pj)
m]

n
i,j=1 and B2m =

[
(pi − pj)

2m
]n
i,j=1

for

m ∈ N (where N is the set of natural numbers) in terms of the Schur polynomials.

We also discuss and compute determinant of the matrix Km =
[
pm
i +pm

j

pi+pj

]n
i,j=1

for any integer m in terms of the Schur and skew-Schur polynomials.
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Abstract

Let A be a real hyperplane arrangement and L(A) the geometric lattice formed
by the intersections of hyperplanes in A. We call the fulldimensional cells of A
topes. The Varchenko Matrix ist defined by Vij =

∏
e∈S(Ti,Tj)

we, where the we

are weights on the hyperplanes He of the arrangement and S(Ti, Tj) is the set
of hyperplanes that have to be crossed on a shortest path from a tope Ti to a
tope Tj . Varchenko [1] gave an elegant factorization of the determinant of that
matrix, considering the weights as variables:

det(V) =
∏

F∈L(A)

(
1− w2

F

)mF

where wF =
∏

F⊂He
we and mF are positive integers depending only on the

geometric lattice L(A).
We generalize this theorem for a combinatorial structure called complexes

of oriented matroids. They can be described by only two axioms which capture
local symmetry and local convexity and are a generalization of oriented matroids.
In this talk we will see how the Varchenko Matrix generalizes to complexes
of oriented matroids and will give the general idea of the proof for the nice
factorization formula.
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Abstract

Let Σ = (G, σ) be a signed graph and A(Σ) be its adjacency matrix. The
nullity and cyclomatic number of Σ is denoted by η(Σ) and c(Σ), respectively.
A connected signed graph Σ is said to be cycle-spliced bipartite if every block
is an even cycle. In 2022, Wong, et al., showed for every cycle-spliced bipartite
graph 0 ≤ η(G) ≤ c(G) + 1. In this paper, we extend the results of Wong, et
al., to signed graphs, and prove for every cycle-spliced bipartite signed graph
0 ≤ η(Σ) ≤ c(Σ) + 1. Next, we prove that there is no cycle-spliced bipartite
signed graph Σ of any order with η(Σ) = c(Σ). We give a structural character-
ization of cycle-spliced bipartite signed graphs Σ with nullity η(Σ) = c(Σ)− 1.
Nonsingular cycle-spliced bipartite signed graphs are characterized. For cycle-
spliced signed graphs Σ having only odd cycles, we show that η(Σ) is 0 or 1.
Furthermore, we characterize nonsingular such graphs where every cycle has at
most two cut vertices of Σ.

Joint work with Francesco Belardo, Department of Mathematics and Appli-
cations, University of Naples Federico-II, Italy (Email: fbelardo@unina.it)
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Abstract

Let A be symmetric entrywise nonnegative matrix of order n × n. A fac-
torization A = BCBT , where B is nonnegative matrix of order n × k and C
is symmetric nonnegative matrix of order k × k, is called symmetric nonnega-
tive trifactorization of A. Minimal possible k in such factorization is called the
SNT-rank of A. In the talk we will for the most part take aside the actual values
of matrices and only consider their patterns. Our main focus will be the ques-
tion, how small can SNT-rank be among all symmetric nonnegative matrices A
with given zero-nonzero pattern. The pattern of a matrix can be described by
a simple graph that allows loops. We will answer this question for trees and
complete graphs without loops.

Acknowledgements: Damjana Kokol Bukovšek acknowledges financial sup-
port from the Slovenian Research Agency (research core funding No. P1-0222).
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Abstract

We present the facilities of a recently developed expert system designed for im-
proving research procedures in the theory of simple graphs, weighted graphs (in
particular, signed graphs) and oriented graphs. The system is a user-friendly
web-based platform based on modern web development frameworks and tech-
nologies.

It is also

• interactive (in the sense that a user have a possibility to create a graph
and immediately receive a number of its structural or spectral invariants
or particular properties),

• upgradeable (in the sense that a user has a possibility to upgrade it by
implementing the computation of new invariants or properties) and

• created under the terms of the GNU General Public License as published
by the Free Software Foundation (in simple words, the License guarantees
every user the freedom to run, study and modify the software).

Other functionalities include importing graphs from files and editing through
a drawing interface.

This expert system is designed to substitute existing tools such as new-
GRAPH and similar software. It is developed under a national research project,
partially supported by EU funds.
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Abstract

A tensor is a multidimensional analog of a matrix. We callA to be aQ-tensor
if the associated tensor complementarity problem, TCP (q,A), has solution for
every vector q. In this paper, we extend some properties of Q-matrices (which
are prominently studied in the linear complementarity theory) to Q-tensors.
In particular, we provide sufficient condition for a principal subtensor of a Q-
tensor to be a Q-tensor. We also provide sufficient conditions for a tensor to
be a Q-tensor using the Q-property of its principal subtensors. It is known
that R-tensors are Q-tensors and converse is not true in general. In this paper,
we give a condition for a Q-tensor to be an R-tensor. In addition, we prove
a few results for positive (nonnegative) tensors. We illustrate our results with
examples.
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On the numerical range of some
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Abstract

The numerical range of a matrix A ∈ Mn is the subset of the complex plane
denoted and defined by W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}. It is a convex set,
as asserted by the famous Toeplitz-Hausdorff Theorem [2, 3], containing the
spectrum of A. This concept has been intensively investigated, due to its theo-
retical interest and applications. The Elliptical Range Theorem characterizes
W (A) for A ∈ M2 and the elliptic shape persists in certain cases [1], indepen-
dently of the size of A. In this talk, the numerical range of some structured
matrices, whose eigenvalues are integer numbers, and their boundary genera-
ting curves, are explored. Some of these boundary generating curves are oval
shaped. Illustrative figures of the obtained results are presented.

Based on a joint work with Natália Bebiano (CMUC, University of Coimbra)
and Graça Soares (CMAT-UTAD, University of Trás-os-Montes e Alto Douro).

Acknowledgements: Work supported by Portuguese funds through the Cen-
ter for Research and Development in Mathematics and Applications (CIDMA)
and the Portuguese Foundation for Science and Technology (FCT - Fundação
para a Ciência e a Tecnologia), project UIDB/04106/2020.
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Abstract

Kernel matrices have appeared over the past few decades as intermediate
structures when computing with “big data,” such as during support vector ma-
chine classification or kernel ridge regression. Naive matrix algorithms quickly
become too computationally intensive once such matrices reach moderate size;
in fact, even explicitly forming such matrices is undesirable when the number of
points is large. Hence, various low-rank approximations to such matrices become
indispensable. If the underlying points come from the real world, however, it is
a priori not often clear what the numerical rank of the resulting kernel matrix
is for a given tolerance: existing methods like rank-revealing QR factorization
or its randomized variants only apply in the case when the full matrix to be
approximated has already been formed.[1] Instead, we may facilitate computa-
tion if we could approximate the spectral decay of the kernel matrix by that
of the submatrix formed after sampling relatively few of the underlying points,
using just the geometry of the points and the analytical properties of the kernel
alone. In this work, we seek to characterize the eigenvalue decay approximations
that result after using various point sampling schemes, both deterministic and
randomized. This idea is motivated by the point sampling schemes explored
previously in the context of constructing low-rank approximations, as in [2].
We explore these sampling methods and others while highlighting the connec-
tions between geometric (point-based) and algebraic (matrix-based) eigenvalue
approximation techniques.

Acknowledgements: This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 2038118.
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Abstract

Analysis on graphs studies the connections between geometrical or combina-
torial properties of graphs and natural operators defined on them. In this talk,
I will present a new geometrical construction leading to an infinite collection of
families of discrete graphs [1, 2], where all the elements in each family are (finite)
isospectral non-isomorphic graphs for the discrete magnetic Laplacian with nor-
malised weights. The construction is based on the notion of (isospectral) frames
which, together with the s-partition of a natural number r, define the isospec-
tral families of graphs by contraction of distinguished vertices of the frames.
The isospectral frames have high symmetry and we use a spectral preorder of
graphs studied in [3, 4] to control the spectral spreading of the eigenvalues un-
der elementary perturbations of the graph like vertex contraction and vertex
virtualisation.

Acknowledgements: Work (partially) supported by Madrid Government un-
der the Agreement with UC3M in the line of Research Funds for Beatriz Galindo
Fellowships (C&QIG-BG-CM-UC3M) and in the context of the V PRICIT and
the project 6G-INTEGRATION-3 (grant no. TSI-063000-2021-127), funded by
UNICO program (under the Next Generation EU umbrella funds), Ministerio
de Asuntos Económicos y Transición Digital of Spain.
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[4] J.S. Fabila-Carrasco, F. Lledó and O. Post,Spectral gaps and discrete mag-
netic Laplacians, Lin. Alg. Appl. 547: 183-216 (2018).



25th Conference of the International Linear Algebra Society (ILAS 2023)

Madrid, Spain, 12-16 June 2023	 177

On the Directional Derivative of
Kemeny’s Constant

Connor Albright1, Kimberly P. Hadaway2, Ari Holcombe
Pomerance, Joel Jeffries, Kate J. Lorenzen3, Abigail K. Nix

1 Sonoma State University, USA
E-mail: cpcalbright2010@gmail.com

2 Iowa State University, USA
E-mail: kph3@iastate.edu
3 Macalester College, USA

E-mail: aholcomb@macalester.edu
3 Iowa State University, USA
E-mail: joeljeff@iastate.edu

3 Linfield University, USA
E-mail: klorenzen@linfield.edu

3 Middlebury College, USA
E-mail: anix@middlebury.edu

Abstract

In a connected graph, Kemeny’s constant gives the expected time of a ran-
dom walk from an arbitrary vertex x to reach a randomly-chosen vertex y.
Because of this, Kemeny’s constant can be interpreted as a measure of how well
a graph is connected. It is generally unknown how the addition or removal of
edges affects Kemeny’s constant. Inspired by the directional derivative of the
normalized Laplacian, we derive the directional derivative of Kemeny’s constant
for several graph families. In addition, we find sharp bounds for the directional
derivative of an eigenvalue of the normalized Laplacian and bounds for the di-
rectional derivative of Kemeny’s constant.

Acknowledgements: This work was conducted primarily at the 2022 Iowa
State University Math REU which was supported through NSF Grant DMS-
1950583.

References

[1] Askoy, Sinan G., Purvine, Emilie, and Young, Stephen J. “Directional Lapla-
cian centrality for cyber situational awareness.” Pre-print on arXiv, (2021).
https://arxiv.org/2008.04357v2.

[2] Breen, Jane, Butler, Steve, Day, Nicklas, DeArmond, Colt, Lorenzen, Kate,
Qian, Haoyang, and Riesen, Jacob. “Computing Kemeny’s constant for a
barbell graph.” Electronic Journal of Linear Algebra, 35 (2019):583–598.
https://doi:10.13001/ela.2019.5175.



25th Conference of the International Linear Algebra Society (ILAS 2023)

178	 Madrid, Spain, 12-16 June 2023

[3] Breen, Jane and Kirkland, Steve. “A structured condition number for Ke-
meny’s constant.” SIAM Journal on Matrix Analysis and Applications, 40,
no. 4 (2019):1555–1578, https://doi:10.1137/19M1240964.

[4] Grinstead, Charles M. and Snell, J. Laurie. Introduction to Probability.
Rhode Island: American Math Society, 1997.

[5] Levene, Mark and Loizou, George. “Kemeny’s constant and the random
surfer.” American Math Monthly, 109 no. 8 (2002): 741–745.

[6] Kemeny, John. G.; Snell, J. Laurie. Finite Markov Chains. Princeton, NJ:
D. Van Nostrand, 1960.

[7] quid. ”Can eigenvectors of a symmetric circulant matrix be real?” Last mod-
ified August 5, 2016.
https://math.stackexchange.com/q/1883244



25th Conference of the International Linear Algebra Society (ILAS 2023)

Madrid, Spain, 12-16 June 2023	 179

Approximation of the smallest
eigenvalue of large hermitian matrices

dependent on parameters

N. Guglielmi1, M. Manucci2, E. Mengi3

1 Division of Mathematics, Gran Sasso Science Institute, Italy
E-mail: nicola.guglielmi@gssi.it

2 Division of Mathematics, Gran Sasso Science Institute, Italy
E-mail: mattia.manucci@gssi.it

3 Department of Mathematics, Koç University, Turkey
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Abstract

We investigate the numerical solution of the global optimization problem

λLB = min
µ∈D

λ−1(µ), (1)

where D is a compact subset of Rp and λ−1(µ) denotes the smallest eigenvalue
of a parametric dependent hermitian matrix

A(µ) :=

κ∑
l=1

fl(µ)Al (2)

where Al : Cn → Cn and fl : D̄ → R for l = 1, ..., κ represent given hermitian
matrices and real-analytic functions, respectively. Being able to solve in a fast
and reliable way problem (1) is crucial in projection Model Order Reduction, in
particular for the construction of reduced spaces through greedy algorithms [1].

In general problems of type (1) come with two main challenges: 1) they
are nonconvex and 2) they have an elevate computational complexity since we
are naturally interested in the case of large matrices (2), i.e. n ≫ 1. To deal
with these difficulties we develop an algorithm that, concerning 2), employs the
subspace framework [2] which enables to significantly reduce the computational
complexity ; concerning 1) it relays on EigOpt [3], for p = 1 or p = 2, and it
uses a gradient flow penalization method to treat the case p > 2. The proposed
algorithm, under suitable assumptions, can be shown to be globally convergent.

We show through numerical test examples and comparisons that the pro-
posed method is efficient and reliable in solving (1).
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Abstract

In this talk we give conditions that guarantee that a matrix is similar to
a centrosymmetric matrix. Furthermore, we give conditions for a matrix to
be similar to a matrix which has a centrosymmetric principal submatrix, and
conditions under which a matrix can be dilated to a matrix similar to a cen-
trosymmetric matrix.



25th Conference of the International Linear Algebra Society (ILAS 2023)

182	 Madrid, Spain, 12-16 June 2023

Parallel-in-time solver for the all-at-once
Runge-Kutta discretization

Luca Bergamaschi1, Santolo Leveque2, Ángeles Mart́ınez3, and
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Abstract

Time-dependent PDEs arise quite often in many scientific areas, such as
mechanics, biology, economics, or chemistry, just to name a few. Of late, re-
searchers have devoted their effort in devising parallel-in-time methods for the
numerical solution of time-dependent PDEs [1, 2, 3]. As opposed to the classical
approach, in which an approximation of the solution at a time t is computed
after solving for all the previous times, parallel-in-time methods approximate
the solution of the problem for all times concurrently. This in turns adds a
new dimension of parallelism and allows to speed-up the numerical solution on
modern supercomputers.

In this talk, we present a fully parallelizable preconditioner for the all-at-
once linear system arising when employing a Runge–Kutta method in time.
The resulting system is solved iteratively for the numerical solution and for the
stages. The proposed preconditioner results in a block-diagonal solve for all the
stages at all the time-steps, and a Schur complement obtained by solving again
systems for the stages. In order to solve for the system for the stages, we employ
a new block-preconditioner based on the SVD of the Runge–Kutta coefficient
matrix.

Parallel results on the Stokes equation show the robustness of the precondi-
tioner with respect to the discretization parameters and to the number of stages,
as well as very promising scalability and parallel efficiency indices.

Acknowledgements: Work (partially) supported by INDAM-GNCS Project
CUP E55F22000270001.
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Abstract

To solve a large, sparse nonsymmetric linear system Ax = b, where A is
a nonsingular matrix using iterative methods, the use of preconditioning tech-
niques is fruitful. The right preconditioning technique consists of finding a
matrix M for which the solution via an iterative method of the equivalent lin-
ear system AM−1y = b, where y = Mx, is obtained more efficiently. Thus,
the preconditioner M should approximate the matrix A in some sense. There
are mainly two preconditioning techniques. One that computes the matrix M
and another that computes its inverse. In this work we study factorized ap-
proximate inverse preconditioners that compute explicitly the preconditioner as
an approximation of A−1. Then, preconditioning is applied by matrix-vector
products in each iteration of the Krylov method, whichis important for efficient
parallel computations.

In this work, we use the Sherman–Morrison formula to obtain an approxi-
mate inverse LU preconditioner. The main difference with respect to the AISM
preconditioner [1], which is also based on the Sherman-Morrison formula, is the
way of applying recursively the inversion formula to obtain a new decomposition
of A−1. Then we use a compact representation of this decomposition to build
our proposed preconditioner V–AISM.

The inverse of A may be computed considering a nonsingular matrix A0 of
the same size and two sets of vectors {xk}nk=1 and {yk}nk=1 such that

A = A0 +
n∑

k=1

xky
T
k = A0 +XY T , (1)

where X = [x1 x2 · · · xn] and Y = [y1 y2 · · · yn].
Defining Ak = A0 +

∑k
i=1 xiy

T
i with k = 1, . . . , n we have

{
Ak = Ak−1 + xky

T
k

An = A.
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Suppose that r1 = 1+ yT1 A
−1
0 x1 ̸= 0. By the Sherman–Morrison formula [2,

Eq. (2)] and [3], the matrix A1 = A0 + x1y
T
1 is nonsingular and

A−1
1 = A−1

0 − 1

r1
A−1

0 x1y
T
1 A

−1
0 = A−1

0

(
I − 1

r1
x1w

T
1

)
= A−1

0 V1

where wT
1 = yT1 A

−1
0 and V1 = I − 1

r1
x1w

T
1 . Following this process, assuming

that rk = 1 + yTk A
−1
k−1xk ̸= 0 for xk and yk, then

A−1
k = A−1

k−1 −
1

rk
A−1

k−1xky
T
k A

−1
k−1 = A−1

k−1

(
I − 1

rk
xkw

T
k

)
= A−1

k−1Vk,

where wT
k = yTk A

−1
k−1 and Vk = I − 1

rk
xkw

T
k .

Then,

A−1 = A−1
n = A−1

0 V1 · · ·Vn. (2)

It is worth to say that there is a main difference between the expressions of
A−1 obtained in [1] and (2). Actually, to build the preconditioner AISM given
in [1] the expression of A−1 is an additive decomposition obtained applying also
the Sherman–Morrison formula. Here to construct the new preconditioner V–
AISM we have a multiplicative representation of A. In fact, this decomposition
depends explicitly on the matrices Vk.

To compute the preconditioner, as usual, entries are zeroed in the process if
they are small enough. We prove that this process is breakdown-free for M- and
H-matrices. Moreover, numerical experiments show that this new preconditioner
is efficient and faster than AISM.

Acknowledgements: Work supported by Conselleria de Innovación, Universi-
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Abstract

A defect correction formula for the quadratic matrix equation A1X
2+A0X+

A−1 = 0 is presented. More specifically, assume that G̃ is an approximation of
the sought solution G. Then, by following the ideas of [2] and [3], we derive

an equation for the defect H = G − G̃ and express H in terms of an invariant
subspace of a suitable pencil. This equation allows us to introduce a modification
of the Structure-preserving Doubling Algorithm (SDA), that enables refining
an initial approximation to the sought solution. This modification provides
substantial advantages, in terms of convergence acceleration, in the solution of
equations coming from stochastic models.

Finally, we show an application to the analysis of random walks in the quar-
ter plane, where the matrix coefficients Ai, i = −1, 0, 1, as well as the sought
solution G, are infinite matrices endowed of the quasi-Toeplitz structure (QT
matrices). In this framework, there are situations where Cyclic Reduction and
SDA fail to converge if applied in the customary way, whereas, under a suitable
choice of the starting approximation G̃, our modified version of SDA converges
in a few iteration steps. Numerical experiments confirm the effectiveness of the
proposed method.

More details can be found in [1].
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Abstract

In this talk, I will discuss two forms of least squares mean: the Karcher
mean and the Wasserstein mean on the cone of positive definite Hermitian
matrices. Then, I will talk about the extension of Karcher mean in the infinite-
dimensional setting of positive operators on a Hilbert space and its important
properties. Lastly, the Wasserstein mean in the infinite-dimensional setting
of positive operators on a Hilbert space and its attractive properties will be
explored.
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On the minimal least eigenvalues of
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Abstract

The integral circulant graph ICGn(D) has the vertex set Zn = {0, 1, 2, . . . , n−
1} and vertices a and b are adjacent if gcd(a − b, n) ∈ D, where D ⊆ {d : d |
n, 1 ≤ d < n}. In this paper we prove that the minimal value of the least eigen-
values (minimum least eigenvalue) of the integral circulant graphs ICGn(D) of a
given order n with its prime factorization pα1

1 · · · pαk

k , is equal to − n
p1
. We char-

acterize the unique graph with minimum least eigenvalues among all integral
circulant graphs of a given order n. Furthermore, it is shown that the minimum
least eigenvalue of the connected integral circulant graphs ICGn(D) of a given
order n such that their complements are also connected, is equal to − n

p1
+pα1−1

1 .
We determine all such graphs whose spectra contain minimum least eigenvalue.
Finally, We calculate second minimal value of the least eigenvalues of integral
cicrulant graphs of a given order n, which is − n

p1
+1, and characterize all graphs

whose spectra contain that value.
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Abstract

In the present talk we show the relation between the stability of Schur de-
composition and the Jordan structure of the perturbed matrix.
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Abstract This work considers the numerical solution of a bilevel
optimisation problem for the estimation of parameters in nonlocal image

denoising models. The relevant parameters are the fidelity weight and a weight
within the kernel of the nonlocal operator. Variational methods are used to

characterise local minima via a first order optimality system. A finite element
method is used to discretise the kernel and the associated linear systems. For
the former, a nonequispaced fast Fourier transform [?] is used to efficiently

compute the vectorial Gauss transform associated with the nonlocal kernel as
in [2]. For the latter, we use a preconditioner based on the nonlocal matrix to

speed up the iterations of the LGMRES Krylov method. We use a
second-order trust-region algorithm for optimising the denoising parameters.
Several experiments are provided to illustrate the efficiency of the method and

contrast them against the dense-matrix approximation showcased in the
previous work [3].
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Abstract

The transition from a disordered state to the one in which all the nodes
oscillates with the same phase typically occurs in a gradual way, which is char-
acteristic of second order transitions. Therefore, the discovery of explosive syn-
chronization on the networked Kuramoto model [1] when there’s a correlation
between degree (topological feature) and natural frequency (dynamical feature)
marked a tipping point in this field.

For that purpose, we investigated how modifying the Kuramoto model by
using degree-biased Laplacians [2] affects the explosive synchronization. In this
talk I will report how explosive synchronization is modified by these kind of
operators, changing the points at which the transition occurs [3]. Moreover,
due to the heavy dependence between the operators and the network topology,
we observed that the explosive synchronization happens on tree-like graphs,
while it disappears for scale-free ones. Therefore, there is a transition between
explosive synchronization in a branched acyclic system to normal one once cycles
emerge in the system. This transition may represent a potential mechanism with
which a neuronal system can synchronize explosively individual neurons, and
returning to normal synchronization when the neuronal network is formed to
avoid pathological states like epilepsy or chronic pain [3].
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Graph Degeneracy and Orthogonal
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Abstract

We apply a technique of Sinkovic and van der Holst for constructing or-
thogonal vector representations of a graph whose complement is a k-tree to any
graph whose complement has degeneracy k.
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Verified error bounds for all eigenvalues
and basis of invariant subspaces of a real
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Abstract

In this talk, we are concerned with the accuracy of computed eigenvalues
and eigenvectors in the eigenvalue problem

Ax = λx, A ∈ Rn×n, λ ∈ R, x ∈ Rn \ {0},

where A is symmetric, λ is an eigenvalue, and x is an eigenvector corresponding
to λ. Let k ≤ n, and P ∈ Rn×k and B ∈ Rk×k satisfy AP = PB, where B is not
necessarily diagonal. The eigenvalues of B are those of A, and span(P ) is called
the invariant subspace of A corresponding to these eigenvalues. The eigenvectors
of A corresponding to these eigenvalues are included in this subspace.

We consider computing verified error bounds for all numerically obtained
(approximate) eigenvalues and eigenvectors, in which all the possible rounding
and truncation errors have been taken into account. Algorithms for computing
such error bounds have been proposed in [1, 2, 3]. The algorithms in [1, 3] are
applicable even when A is non-symmetric, give error bounds for approximate
eigenvectors when the corresponding eigenvalues are well-separated, and provide
error bounds for approximate basis of invariant subspaces when the eigenvalues
are closely clustered. Although the algorithm in [2] is applicable only when A
is symmetric, this algorithm involves only four floating-point matrix multipli-
cations and does not involve other procedures requiring cubic complexity. On
the other hand, when the eigenvalues are closely clustered, this algorithm does
not give error bounds for approximate eigenvectors and/or basis of invariant
subspaces.

This talk has two purposes. The first purpose is to present a theory for
computing error bounds for approximate basis of invariant subspaces when A is
symmetric and the eigenvalues are closely clustered. The second purpose is to
propose an algorithm for computing error bounds for all approximate eigenval-
ues, and approximate eigenvectors or basis of invariant subspaces. We develop
this algorithm by combining the algorithm in [2] and the presented theory. Par-
ticular emphasis is put on the computational cost of the proposed algorithm.
Additional procedures requiring cubic complexity are unnecessary for computing
error bounds for approximate basis of invariant subspaces. As a consequence,
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the proposed algorithm also involves only four floating-point matrix multiplica-
tions and does not involve other procedures requiring cubic complexity. We see
from results of numerical experiments that the proposed algorithm was faster
than the algorithms in [1, 3].
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Abstract

It is known that there is an alternative characterization of characteristic vertices
for trees with positive weights on their edges via bottleneck matrices and Per-
ron branches. In this talk, we will consider trees with matrix edge weights and
discuss the existence of characteristic-like vertices in terms of bottleneck ma-
trices and Perron branches. Furthermore, we also obtained a relation between
characteristic-like vertices and the first non-zero Laplacian eigenvalue.
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Abstract

Roots of a nonnegative matrix (if they exist,) may or may not be nonneg-
ative. The matrix exponential A = eB of an (essentially) nonnegative matrix
B is indeed a nonnegative invertible matrix all of whose nonnegative powers
At = etB (t ≥ 0) are, clearly nonnegative, too. The converse is also true, as
shown recently by Van-Brunt [1]: If A is an invertible nonnegative matrix all of
whose roots exist and are nonnegative, then there exists a nonnegative matrix
B such that A = eB . We refer to such an A as a strongly infinitely divisible ma-
trix (A ∈ SIDM). An inverse M -matrix is a particular example of an SIDM.
Inverse M -matrices play an important role in this study.

In this talk, we discuss certain operations that leave SIDM invariant, ex-
amine submatrices of SIDM’s, discover an intimate connection of SIDM’s and
their roots to P-matrices and eventually nonnegative matrices. Further, we will
discuss Hadamard/Kronecker products of SIDM’s, monotonicity of roots of
SIDM’s and eigenvalues of SIDM’s.
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Abstract
Let f : Cn −→ Cn be a linear transformation defined over the complex field
and Hinv(f) the lattice of the hyperinvariant subspaces of f (that is, the set

of linear transformations commuting with f).
We study the linear transformations whose lattices of hyperinvariant subspaces

are isomorphic to Hinv(f). Our work is inspired by [1]. The results are
essentially combinatorial.
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Abstract

PDDSparse is a new implementation of probabilistic domain decomposition
aimed at computing the solution of elliptic PDEs with superior scalability. This
promising performance is achievable by mixing the Feynman-Kac probabilistic
representation of the BVP with a linear interpolator. As a result of this way of
proceeding, the solution of the BVP on the interfaces is posed as the solution
of a sparse linear system of equations with stochastic coefficients computed via
Monte Carlo methods. In this talk we will give an insight into the heuristics that
allow us to argue that this linear system is invertible. We will also portray how
the closeness of the linear system’s matrix structure to an M-matrix provides
us with a polynomial preconditioner. Furthermore, resorting to the stochas-
tic representation of the initial problem, a threshold to the matrix condition
number and its dependence on the domain discretization will also be estimated.
Numerical experiments supporting these investigations will be shown during the
presentation.
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Miguel V. Carriegos3
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Abstract
In this talk, we will discuss a procedure to lift Rosenthal’s decoding algorithm
[3] for convolutional codes, C, over a finite prime field Fp to convolutional

codes, C, over the ring of modular integers Z/pnZ. Viewed such convolutional
code C as a linear dynamical system through (one of) its (equivalent) I/S/O
representation [2], we are able to generalize the natural approach described by

Babu and Zimmermann [1] for linear codes to the convolutional context.
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Abstract

Consider the linear system of equations Ax = b, where A ∈ Rm,n, b ∈ Rm

and x ∈ Rn is an unknown vector. Randomized Gauss-Seidel (RGS) method,
which is also known as the randomized coordinate descent method, was first
developed by Leventhal and Lewis [1], in which an improved approximation is
obtained by executing an exact line search in the direction of randomly chosen
ej , the jth column of the identity matrix. Leventhal and Lewis showed that
RGS method converges linearly in expectation to the least squres solution for
overdetermined systems (both consistent and inconsistent). If a linear system is
an underdetermined system (m < n), then one is often interested in finding the
solution with least norm, which is given by A†b. In [2], Ma et al. proved that
RGS may not converge to A†b for an underdetermined system. They proposed
an extension of RGS, known as the randomized extended Gauss-Seidel (REGS)
method, which converges for both underdetermined and overdetermined (con-
sistent/inconsistent) systems. Apart from the randomized selection rule, many
greedy selection rules also exist to choose the search direction, some determin-
istic and some randomized, for the coordinate descent method [3, 4].

In this particular work, we present the coordinate descent method in the
Petrov-Galerkin framework. The selection of the search subspace, which is of
dimension 2, is done in a greedy manner. We name the proposed method as
the 2-D maximal residual Gauss-Seidel (D2MRGS) method. Convergence is
analysed for the stated method and numerical experiments are provided to
demonstrate its efficiency. As compared to existing methods, the D2MRGS
has two clear advantages additional to the observations that it is faster than
the randomized versions. Firstly, in case of block methods one has to deal with
pavings, which is not required in our method. Other than that, all calculations
necessary for the execution of our method can be easily achieved algebraically,
which is not usually the case with block versions using higher dimensions. Also,
the convergence bound provided in our analysis is scalable in the sense that if
higher dimensional subspaces are chosen, the bound gets as many times smaller.
However, executions in such cases may become cumbersome.
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For underdetermined systems, we perform an extension in the lines of the
REGS. But in our case we perform it in a greedy manner similar to the D2MRGS.
Again, we prove that our method converges to A†b and put forward numerical
examples showing the same.
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Abstract

With the recent emergence of mixed precision hardware, there has been a
renewed interest in its use for solving numerical linear algebra problems fast
and accurately. The solution of least squares (LS) problems minx ∥b − Ax∥2,
where A ∈ Rm×n, arise in numerous application areas. Overdetermined stan-
dard least squares problems can be solved by using mixed precision within the
iterative refinement method of Björck, which transforms the least squares prob-
lem into an (m+n)× (m+n) “augmented” system. It has recently been shown
that mixed precision GMRES-based iterative refinement can also be used, in an
approach termed GMRES-LSIR. In practice, we often encounter types of least
squares problems beyond standard least squares, including weighted and gener-
alized least squares, minx ∥D1/2(b − Ax)∥2, where D1/2 is a (diagonal) matrix
of weights. In this talk, we discuss a mixed precision GMRES-LSIR algorithm
for solving these problems.
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Abstract

Solutions to optimization problems involving the numerical radius often be-
long to the class of “disk matrices”: those whose field of values is a circular
disk in the complex plane centered at zero. We investigate this phenomenon
using the variational-analytic idea of partial smoothness. We give conditions
under which the set of disk matrices is locally a manifold M, with respect to
which the numerical radius r is partly smooth, implying that r is smooth when
restricted to M but strictly nonsmooth when restricted to lines transversal to
M. Consequently, minimizers of the numerical radius of a parametrized matrix
often lie in M. Partial smoothness holds, in particular, at n× n matrices with
exactly n − 1 nonzeros, all on the superdiagonal. On the other hand, in the
real 18-dimensional vector space of complex 3 × 3 matrices, the disk matrices
comprise the closure of a semi-algebraic manifold L with dimension 12, and the
numerical radius is partly smooth with respect to L.



25th Conference of the International Linear Algebra Society (ILAS 2023)

204	 Madrid, Spain, 12-16 June 2023

Factorization of completely positive
matrices by alternating minimization

Roger Behling�, Hugo Lara‡, Harry Oviedo†
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Abstract

In this work, we consider the completely positive matrix factorization problem
where, given a symmetric matrix, one tries to find a Cholesky-type factorization
with an entrywise nonnegative factor. To deal with this problem, we propose
a proximal alternating minimization procedure. In each iteration, our method
splits the original factorization problem into two optimization subproblems, the
first one being a orthogonal procrustes problem, which is taken over the or-
thogoal group, and the second one over the set of entrywise positive matrices.
We present both a convergence analysis of the method and favorable numerical
results
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Abstract

A real square matrix A is called a Q-matrix if LCP(A, q) has a solution
for all q ∈ Rn, i.e., for every vector q, there exists an x ∈ Rn such that x ≥ 0,
Ax+q ≥ 0 and xT (Ax+q) = 0. A well known result states that a Q-matrix with
nonpositive off-diagonal entries is inverse nonnegative. In this talk, we shall look
at properties of two classes of matrices that extend the inverse nonnegativity of
the Q-matrices to the generalized inverse of a matrix. We shall also look at a
new result for the class of Q-matrices.
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Abstract

The classical Korovkin theorem, due to P.P. Korovkin has many generaliza-
tions and analogues to different settings and applications to various branches
of science (See [3]). A quantitative form of the Korovkin’s theorem obtained
by O. Shisha and B. Mond in 1968 [5] gives the rate of convergence of the ap-
proximation process utilizing the modulus of continuity. Recently, Yusuf Zeren,
Migdad Ismailov and Cemil Karacam obtained a Korovkin-type theorem in the
setting of Banach function spaces in [6]. An operator version of Korovkin’s
theorem is obtained by Dumitru Popa [4]. We proved quantitative versions of
these results and applied our theorem to various examples in [2]. An important
application of this result to the preconditioners of Toeplitz linear systems is also
given there. In this talk, I plan to discuss these recent developments and other
related problems concerning the convergence of preconditioned linear systems.

Acknowledgements: P.C. Vinaya is thankful to the University Grants Com-
mission (UGC), India for financial support.
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Abstract

Embedding-based techniques for data representation learning have become
increasingly important and have been applied to various data types such as
text, knowledge graphs, and images. The embedding methods learn semantic
information from the data and project it onto a low-dimensional vector space
while preserving relational information. In many cases, even from a single data
source, multiple types of data objects are present. Furthermore, with the re-
cent advancements in supervised machine learning, human-annotated labels are
often available for clustering and classification of these data. In this context,
learning embeddings from multi-type data, where different types coexist, has
been a difficult problem to solve. Latent Semantic Indexing (LSI) [5] was an
early attempt to represent objects in vectors of the same length. Various recent
methods have also been proposed to address this problem in specific contexts,
such as Doc2vec [1] and PTE [2] for textual data and metapath2vec [3] for het-
erogeneous networks. However, they have limitations when it comes to learning
semantic proximity between objects with different types because they fail to
ensure that the learned spaces are in a common basis. This paper introduces a
new method for learning co-embeddings from multi-type data using integrated
symmetric nonnegative matrix factorization. The method integrates multi-type
relational data into a symmetric collective data matrix and uses the SymNMF [4]
formulation to represent co-embeddings of the data. Additionally, the proposed
method incorporates semi-supervision with a constraint that imposes partial
label information, in a similar manner as proposed in MEGA [9], thereby fully
utilizing the available label information for clustering.

With the given collective symmetric nonnegative data matrix, the proposed
method in this research decomposes the SymNMF formulation of a given sym-
metric nonnegative data matrix into a JointNMF [8] formulation, solving multi-
ple symmetric and standard NMF problems with shared factor matrices simulta-
neously. It utilizes a block coordinate descent algorithm [6, 7] to solve nonnega-
tive least squares problems and is evaluated on several benchmark datasets. The
results demonstrate that the proposed method outperforms existing embedding
methods for clustering and classification.
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Abstract

The inf-sup stable Taylor–Hood finite element is widely used when solving
Stokes and Navier–Stokes problems. Typically mass is conserved only in a weak
sense for Taylor–Hood elements, which can impact the accuracy of solutions.
One approach to improving mass conservation properties is to simply augment
the Taylor–Hood pressure approximation with piecewise constant functions [1,
2]. The resulting pressure approximation is locally conservative, but the richer
pressure approximation space has consequences for the solution of the resulting
linear system(s), e.g., a singular coefficient matrix and pressure mass matrix.
This talk will describe these challenges, and will discuss ways of recovering
efficient iterative solvers for Stokes and Navier–Stokes discretisations.

Acknowledgements: This work was supported by EPSRC grant EP/W033801/1.
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Abstract

We consider a vibrational system control problem over a finite time hori-
zon. The performance measure of the system is taken to be p-mixed H2 norm
which generalizes the standard H2 norm. We present an algorithm for efficient
calculation of this norm in the case when the system is parameter dependent
and the number of inputs or outputs of the system is significantly smaller than
the order of the system. Our approach is based on a novel procedure which
is not based on solving Lyapunov equations and which takes into account the
structure of the system. We use a characterization of the H2 norm given in
terms of integrals which we solve using adaptive quadrature rules. This enables
us to use recycling strategies as well as parallelization. The efficiency of the new
algorithm allows for an analysis of the influence of various system parameters
and different finite time horizons on the value of the p-mixed H2 norm. We
illustrate our approach by numerical examples concerning an n-mass oscillator
with one damper. Additionally, we show preliminary new results for the case
with multiple dampers.

Acknowledgements: Work supported by Croatian Science Foundation, sci-
entific project Vibration Reduction in Mechanical Systems (VIMS, IP-2019-04-
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Abstract

Let H ∈ Cn,n be Hermitian and S0, S1, . . . , Sk ∈ Cn,n be symmetric matri-
ces. We consider the problem of maximizing the Rayleigh quotient of H with
respect to certain constraints involving symmetric matrices S0, S1, . . . , Sk. More
precisely, we compute

mhs0s1...sk(H,S0, S1, . . . , Sk) := sup

{
v∗Hv

v∗v
: v ∈ Cn \ {0}, vTSiv = 0

for i = 0, . . . , k

}
, (P)

where T and ∗ denote respectively the transpose and the conjugate transpose
of a matrix or a vector.

Such problems occur in stability analysis of uncertain systems and in the
eigenvalue perturbation theory of matrices and matrix polynomials [1, 2]. The
µ-value of M ∈ Cn,n with respect to perturbations from the structured class
S ⊆ Cn,n is denoted by µS(M) and defined as

µS(M) := (inf {∥∆∥ : ∆ ∈ S, det(In −∆M) = 0})−1
,

where In is the identity matrix of size n×n and ∥·∥ is the matrix spectral norm.
A particular case of problem (P) with only one symmetric constraint (i.e., when
k = 0) is used to characterize the µ-value of the matrix under skew-symmetric
perturbations [2]. Indeed, when S is the set of all skew-symmetric matrices of
size n× n, M. Karow in [2] showed that

µS(M) = (mhs0(H,S0))
1
2 , where H = M∗M and S0 = M +MT .
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Moreover, an explicit computable formula was obtained for mhs0(H,S0) in [2,
Theorem 6.3] and given by

mhs0(H,S0) = inf
t∈[0,∞)

λ2

([
H tS0

tS0 H

])
, (1)

where λ2(A) stands for the second largest eigenvalue of a Hermitian matrix
A. However, the solution to the problem (P) with more than one symmetric
constraint is not known.

We derive an upper bound for (P) in terms of minimizing the second largest
eigenvalue of a parameter-depending Hermitian matrix. The upper bound is
shown to be equal to the exact value of the supremum in (P) if the eigenvalue
at the optimal is simple. The results are then applied to derive computable
formulas for the structured eigenvalue backward errors of matrix polynomials
under consideration. Numerical experiments suggests that our results [5] give
better estimation to the supremum in (P) than the one obtained in [4]. This
paper [5] is published in Linear Algebra and its Applications.

Acknowledgements: A.P. acknowledges the support of the CSIR Ph.D. grant
by Ministry of Science & Technology, Government of India. P.S. acknowledges
the support of the DST-Inspire Faculty Award (MI01807-G) by Government of
India.
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Abstract

We introduce and study the envelope of a given square complex matrix, that
is, an envelope-type region in the complex plane that contains the eigenvalues
of the matrix. This set is the intersection of an infinite number of regions
defined by cubic curves. The method of its construction extends the notion
of the numerical range, which is known to be an intersection of an infinite
number of half-planes. As a consequence, the envelope is contained in the
numerical range and represents an improvement in localizing the spectrum of
the matrix. The envelope is compact but not necessarily convex or connected,
and its connected components have the potential of isolating the eigenvalues
of the matrix. We study its geometry, boundary, and number of components,
and also examine the envelope of normal matrices and similarities. Moreover,
we obtain symmetries of the envelope of a tridiagonal Toeplitz matrix, and
explicity characterize envelopes of block-shift matrices, Jordan blocks and two-
by-two matrices.
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Abstract

Alfred Horn’s conjecture on eigenvalues of sums of Hermitian matrices was
proved more than 20 years ago. In this talk we raise the problem of, given
an n-tuple γ in the solution polytope, constructing Hermitian matrices with the
required spectra such that their sum has eigenvalues γ.
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Abstract

A matrix game is known to be a completely mixed game, if all the optimal
pairs of strategies of the game are completely mixed. In this paper, we prove
that a matrix game A with value zero is completely mixed if and only if the value
of the game associated with A+Di is positive for all i, where Di is a diagonal
matrix whose ith diagonal entry is 1 and else 0. Our result provides a new
characterization extending the result of I. Kaplansky (1945). Further, we also
provide a few characterizations for a game associated with an odd-ordered skew-
symmetric matrix to be completely mixed. We also show that if A is an almost
skew-symmetric matrix and the game associated with A has the value positive,
then A+Di ∈ Q for all i, where Di is a diagonal matrix whose ith diagonal entry
is 1 and else 0. Skew-symmetric matrices and almost skew-symmetric matrices
with value positive are P0 and Q0 and hence these are processable by Lemke’s
algorithm.
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Abstract

Let p1 < p2 < · · · < pn be positive numbers, then for any integer m the Loewner

matrix associated with the function xm is given by Lm =
[
pm
i −pm

j

pi−pj

]n
i,j=1

. A

question was left open in a paper [1] by Bhatia, Friedland and Jain to find
formulas for the determinants of the matrices Lm in the case n = 3. We aim to
answer this question firmly in terms of the Schur polynomials in this paper.
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Abstract

A graph is a cograph if and only if it has no induced path on 4 vertices.
The twin reduction graph of a cograph G is denoted by RG. We describe the
Laplacian eigenvalues and eigenvectors of a cographG usingRG and characterize
the cographs with even and odd integer eigenvalues, respectively. Further, we
provide a complete description of the Laplacian spectrum of H-join of graphs
when H is a cograph and obtain bounds for the algebraic connectivity of such
graphs.
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There is a close relation between convolutional codes and linear systems.
This connection between both has already been established and analysed widely
by several authors [4, 5, 6, 7]. From a systems theoretic point of view, a con-
volutional code is a submodule C of F[z]n (see [8]), where F[z] is the ring of
polynomials in the variable z and coefficients in a finite field F. Since F[z] is a
principle ideal domain, a convolutional code C has always a well-defined rank k,
and there exists G(z) ∈ F[z]n×k, of rank k, such that (see [10])

C = imF[z] (G(z)) =
{
v(z) ∈ F[z]n | v(z) = G(z)u(z) with u(z) ∈ F[z]k

}

where u(z) is the information vector, v(z) is the corresponding codeword
and G(z) is the generator of C. If G(z) ∈ F[z]n×k is a generator matrix of C
and U(z) ∈ F[z]k×k is unimodular, then G(z)U(z) is also a generator matrix of
C. Therefore, the maximum degree of the k×k minors of all generator matrices
of C is the same, and it is called the degree of C.

On the one hand, a rate k/n convolutional code C of degree δ can be described
by a time invariant linear system (see [9])

xt+1 = Axt + But

yt = Cxt + Dut

}
, vt =

[
yt

ut

]
, t = 0, 1, 2, . . . , x0 = 0, (1)

where A ∈ Fm×m, B ∈ Fm×k, C ∈ F(n−k)×m and D ∈ F(n−k)×k. We say
that (A,B,C,D) is an input-state-output (ISO) representation of G(z) of
dimension m. Moreover, it is called minimal when m = δ.

On the other hand, a rate k/n convolutional code C of degree δ can be
described from the first-order representation (see [5])

C =
{
v(z) ∈ F[z]n | ∃x(z) ∈ F[z]δ : zKx(z) + Lx(z) +Mv(z) = 0

}
,

where K,L ∈ F(δ+n−k)×δ and M ∈ F(δ+n−k)×n. The triple (K,L,M) is known
as a first-order representation of C.

As far as we are aware, obtaining a minimal ISO representation of a convo-
lutional code implies the use of a first-order representation in a long process. In
this paper, we present an algorithm to construct a minimal ISO representation
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for a convolutional code, using its generator matrix directly without using a
first-order representation.

Moreover, the combination of codes can yield a new code with better prop-
erties; such combinations have been widely used in coding theory in different
forms [1, 2, 3]. We shall focus on the so-called product codes. More concretely,
using the algorithm given in this paper, we provide an ISO representation of
the product convolutional code based on an ISO representation of each one of
the convolutional codes involved in the product.
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Abstract

We consider the problem of approximating the von Neumann entropy of a
large, sparse, symmetric positive semidefinite matrix A, defined as the trace of
−A logA. After establishing some useful properties of this matrix function, we
consider the use of both polynomial and rational Krylov subspace algorithms
within two types of approximations methods, namely, randomized trace estima-
tors and probing techniques based on graph colorings. Numerical experiments
on density matrices of different types of networks illustrate the performance of
the methods.
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Abstract

The hyperbolic singular value decomposition (HSVD) was introduced in [1],
motivated by some signal processing applications such as the so-called covariance
differencing problem. Given A ∈ Rm×n, the formulation of the HSVD is similar
to that of the SVD, except that U is orthogonal with respect to a signature
matrix,

A = UΣV ∗, U∗ΩU = Ω̃, (1)

where Ω = diag(±1) is an m ×m signature matrix provided as input, while Ω̃
is another signature matrix obtained as part of the solution. Sometimes U is
said to be a hyperexchange matrix, or also an (Ω, Ω̃)-orthogonal matrix. With
each singular triplet (σi, ui, vi), there is an associated sign ω̃i (either 1 or −1),
the corresponding diagonal element of Ω̃.

This problem can be solved via an equivalent eigenvalue problem, for instance
one of the following cross-product eigenproblems,

A∗ΩAvi = σ2
i ω̃ivi, (2)

AA∗Ωui = σ2
i ω̃iui. (3)

We will also discuss an alternative formulation with an eigenvalue for the cyclic
matrix of order m+ n.

We are interested in the case of large-scale, sparse A. In that case, the above
eigenproblems can be approached either by standard Lanczos tridiagonalization
or by a symmetric-indefinite Lanczos recurrence (pseudo-Lanczos). Alterna-
tively, we derive a pseudo-Lanczos recurrence for the bidiagonalization of A in
order to preserve the HSVD structure in the projected problem.

The methods are implemented in SLEPc, the Scalable Library for Eigenvalue
Problem Computations [2]. In the case of bidiagonalization, we show how the
pseudo-Lanczos method can be supplemented with a thick restart mechanism
that preserves the structure, in a similar way as was done in [3] for generalized
symmetric-indefinite eigenvalue problems.
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Abstract

In this talk, we consider a multi-approximation problem on the set of pos-
itive semi-definite matrices that comes from finite-dimensional frame theory.
Specifically, given a (finite) sequence Φ0 = {F 0

i }mi=1, with F 0
i ∈ Cdi×n, and a

non-increasing sequence of positive weights α = (αi)
n
i=1, our purpose is to char-

acterize the best approximants Φ = {Fi}mi=1 of Φ0 among the set D(α, d) of the
so-called (α, d)-designs, (where d = (di)

m
i=1). That is, sequences Φ = {Fi}mi=1

such that Fi ∈ Cdi×n and
∑m

i=1 ‖fi,k‖2 = αk, where fi,k is the kth column of
Fi.

The search of optimizers is done by minimizing the (squared) Joint Frame
Operator Distance:

Θ(Φ) =
m∑
i=1

‖F 0
i (F

0
i )

∗ − FiF
∗
i ‖22.

In this talk, we will show a complete characterization of global and local
minimizers of Θ in D(α, d), obtained from results in [1]. It allows us to extend
the solution of Strawn’s conjecture proved in [2] to a multivariate setting.
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Abstract

Let Γ be an undirected graph with vertices v1, . . . , vn. A matrix M with
entries in a field F represents Γ if the off-diagonal entries of M correspond to
edges of Γ in the sense that Mij ̸= 0F if and only if vi and vj are adjacent in
Γ. There are no conditions on the diagonal entries of M . The minimum rank
problem for graphs asks for the minimum rank of a matrix representing a given
Γ, over a specified field. If the field F is finite, then the number of matrices
representing a given graph over F is finite, and one may investigate the wider
question of the distribution of their ranks.

Every symmetric n× n matrix represents a graph on the ordered vertex set
(v1, . . . , vn). Over any finite field except F2, the number of n × n matrices of
rank k is an increasing function of k, for 0 ≤ k ≤ n. Over F2, there are fewer
matrices of rank n than rank n− 1. Restricting to symmetric matrices changes
this picture slightly, but the numbers of symmetric n×n F2-matrices are closely
matched, and coincide if n is odd. This suggests that there exist graphs whose
F2-matrix representations of rank n − 1 outnumber those of rank n. A goal of
this project is to characterize graphs with this property. We present some inital
steps in this direction.
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E-mail: jjibanez@upv.es

Abstract

One of the most popular method for computing the matrix logarithm is a
combination of the inverse scaling and squaring method in conjunction with
a Padé approximation [1]. Recently, [2] presented Taylor based algorithm us-
ing matrix polynomial evaluation methods which are more efficient than the
Paterson–Stockmeyer method [3] in the sense of number of matrix-matrix mul-
tiplications. The maximum theoretical efficiency would allow evaluating a poly-
nomial degree 2k for cost k matrix products (M), k = 1, 2, . . . [3, Prop. 2],
denoted by the optimal degree. However, a nonlinear polynomial system must
be solved which may not have a solution, or even if a solution exist, it may be
numerically unstable [3, Sec. 3.1]. In [3, 4] the cases for optimal degrees 2k

with cost kM for k = 3, 4, are analytically solved. Other evaluation formulas
are used in [2] for Taylor based approximations of the matrix logarithm with
costs greater than 4M , however, they are far from the optimal degree. In this
work the iterative approach from [5] is used with an objective to obtain an ac-
curate and efficient min–max approximations for costs greater than 4M . A new
algorithm is provided generalizing a scaling and squaring method, maintaining
a high efficiency but also opening up to a relative backward error analysis. Sim-
ulations on benchmark matrices indicate that the new method is more efficient
than state-of-the-art codes with a higher accuracy in comparison to Padé-based
approaches.
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Abstract

Simplicial complexes K are generalizations of classical graphs. Their homol-
ogy groups Hk are widely used to characterize the structure and the topology
of data in chemistry, neuroscience, transportation networks, etc. Exploiting the
isomorphism between Hk and so-called higher-order Laplacian operators Lk, [1],
our work investigates the less discussed question of the topological stability of
the complex K: how does Hk change when some edges in K are perturbed?

By introducing suitable weighted graph operators Lk, the question is for-
mulated as a matrix-nearness problem, similar to [2], with a spectral objective
function that suitably takes into account potential homological pollution due
to eigenvalues inherited from previous groups Hk−1,Hk−2, . . . Given the initial
Laplacian operator Lk, we introduce a continuous flow over the edges of the
initial simplex and we develop a bi-level optimization procedure that computes
the nearest simplex (or, equivalently, the smallest edge perturbation δW1) with
a different homology by integrating an alternated matrix gradient flow.

A Bmain problem

min δW1 that changes the topology

matrix-nearness

problem (spectral)

H1
∼= kerL1

spectral inheritance

0 · · · 0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9σ(L1) :

H1 (holes)

uninhereted
spectrumtarget λ+

0 · · · 0 λ1 λ2 λ4 λ7 λ9σ(L0) :

H0

bi-level optimization

σ(L1) λ+

The developed numerical method is extensively tested on synthetic and real-
life datasets; detailed theoretical background and the full optimization frame-
work are provided in [3].
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Abstract

The following problem will be discussed: Given a nonconstant noncommu-
tative polynomial f with coefficients from a field F , is it then true that, for any
sufficiently large n, every traceless n× n matrix T over F is a difference of two
elements from f(Mn(F ))?
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Abstract

Spectral clustering is a well-known technique which identifies k clusters in
an undirected graph with weight matrix W ∈ Rn×n by exploiting its graph
Laplacian

L(W ) = diag(W1)−W, 1 = (1, . . . , 1)T ∈ Rn,

whose eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn and eigenvectors are related to
the k clusters. Since the computation of λk+1 and λk affects the reliability of
this method, the k-th spectral gap λk+1 − λk is often considered as a stability
indicator. This difference can be seen as an unstructured distance between
L(W ) and an arbitrary symmetric matrix L⋆ with vanishing k-th spectral gap.

A more appropriate structured distance to ambiguity such that L⋆ represents
the Laplacian of a graph has been proposed in [1]. Slightly differently, we
consider the objective functional

F (∆) = λk+1 (L(W +∆))− λk (L(W +∆)) ,

where ∆ is a perturbation such that W + ∆ has non-negative entries and the
same pattern of W . We look for an admissible perturbation ∆⋆ of smallest
Frobenius norm such that F (∆⋆) = 0.

In order to solve this optimization problem, we exploit its low rank under-
lying structure. Similarly to [2], we formulate a rank-4 symmetric matrix ODE
whose stationary points are the optimizers sought. The integration of this equa-
tion benefits from the low rank structure with a moderate computational effort
and memory requirement, as it is shown in some illustrative numerical examples.
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Abstract

A seminal result of Gerstenhaber gives the maximal dimension of a vector
space of nilpotent matrices. It also exhibits the structure of such a space when
the maximal dimension is attained. Some extensions of this result to vector
spaces of matrices with a bounded number of eigenvalues have also been studied.
In the talk we consider the most general case. For any positive integers n and
k < n we give the maximal dimension of a vector space of n× n matrices with
no more than k eigenvalues, which proves the conjecture proposed by Loewy
and Radwan. We also describe the structure of such spaces when the maximal
dimension is attained.
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Abstract

Network coding is a part of information theory that describes a method
to maximize the rate of a network, which is modeled by a directed acyclic
multigraph, with one or multiple sources and multiple receivers. The key point of
this method is allowing the intermediate nodes of the network to transmit linear
combinations of the inputs they receive [1]. The algebraic approach given in [5],
provided a rigorous mathematical setup for error correction when coding in non-
coherent networks. In this setting, the transmitted messages (codewords) are
vector subspaces of a given vector space Fn

q , where Fq is the finite field of q
elements and a subspace code is a collection C of vector subspaces of Fn

q . If
all subspaces of C have the same dimension, C is called constant dimension
code. Given two vector subspaces of Fn

q , U and V, their subspace distance
is defined as dS(U ,V) = dim(U) + dim(V) − 2 dim(U ∩ V). If C is a constant
dimension code, d(C) will be an even number (see more details in [9]).

Consider the general linear group GL(n, q), and the Grassmannian Gq(k, n),
which is the set of all k-dimensional vector subspaces of Fn

q . The action of
GL(n, q) on Gq(k, n) provides a relevant way of constructing constant dimension
codes as orbits under the action of some specific subgroup of GL(n, q), called
orbit codes [10]. Most of the bibliography about these codes focus on the use
of cyclic subgroups of GL(n, q), called cyclic orbit codes. Particularly, we
can find several works on spread codes with an orbital structure provided by a
cyclic group [6, 7]. A spread code is a constant dimension code such that all
its elements intersect pairwise trivially and their union covers the whole vector
space. These codes are clearly a relevant family of constant dimension codes
since they reach the maximum distance and, at the same time, the maximum
size for that distance [8].

Our objective is focused on the study of orbit codes associated to other types
of subgroups of the general linear group. As a first step, in [4] authors approach
the study of orbit codes through the action of Abelian non-cyclic subgroups of
GL(n, q), giving an specific construction of maximum distance. Since then, other
authors have carried on with this research topic [2, 3]. Nevertheless, as far as
we know, the only construction about spread codes obtained through the action
of a non-cyclic Abelian group is in [3]. In this paper we analyse in more detail
these codes. Specifically, we generalise the results obtained in [3]. For an even



25th Conference of the International Linear Algebra Society (ILAS 2023)

234	 Madrid, Spain, 12-16 June 2023

integer n and k a divisor of n, we construct an Abelian non-cyclic orbit code of
Fn
q of dimension k having maximum distance. In this particular construction, we

use block matrices composed of companion matrices of a primitive polynomial
and identity matrices. Then, we achieve to complete this orbit code with a nice
family of k-subspaces of Fn

q in such a way the resulting code is a k-spread of Fn
q .
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Spain
E-mail: alberto.lastra@uah.es
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Abstract

The q-Hermite I polynomials are a particular case of the Al-Salam-Carlitz I
orthogonal polynomials with parameter a = −1, and q stands for their unique
parameter, for which we assume that 0 < q < 1, which means that they be-
long to the class of orthogonal polynomial solutions of certain second order
q-difference equations, known in the literature as the Hahn class. Here we con-
sider a Sobolev-type perturbation of the q-Hermite I inner product, giving rise
to the so-called q-Hermite I-Sobolev type orthogonal polynomials of higher or-
der. It is well known that these kind of Sobolev-type polynomial families satisfy
higher-order recurrence relations which can be expressed as certain high-order
banded symmetric semi-infinite matrix. In this work we present a three term
version of the aforementioned high-term recurrence formula, but considering
rational functions as coefficients, and we also propose the corresponding three
diagonal Jacoby-type matrix with entries depending on the variable x.
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Old Song, New Verse — Easier Spectral Questions via Algebraic Restrictions

 
  
   


Abstract

       A      
         
             Av = v
    v       
        det(I  A) = 0  
         
          
      

         
             
               
               
             
         2   = 0, or
k   = 0     k, or even k   = 0   
integers k and 

            
        
      A2 = A, or Ak = A, or even
Ak = A  k and            
           
A   Ak = AT or Ak = A ?      
 A         PA = AP
or PA = AP      P     
      RAs+1 = AR     
matrices R   s    

            RAs+1 =
AR  Rk = I     k      
 RAs+ = AR  Rk = I     k and 
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Abstract

Let B(H) be the algebra of all bounded linear operators on infinite dimen-
sional complex seperable Hilbert space H. An operator T ∈ B(H) is said to
satisfy property (UWE) if σa(T ) \ σuw(T ) = E(T ), where σa(T ), σuw(T ) and
E(T ) denote the approximate specturm, the upper semi-Weyl spectrum and the
set of isolated eigenvalues of T respectively. Here we study property (UWE) for
Toeplitz operators Tϕ, defined on the Hardy space H2(T ) of the unit circle T in
C where the symbol ϕ ∈ L∞(T ) or ϕ is a continuous symbol. In particular, we
study stability of property (UWE) under compact perturbation for functions of
Toeplitz operators.
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Abstract

Multigrid methods are frequently used when solving systems of linear equa-
tions, applied either as standalone solvers or as preconditioners for iterative
methods. Within each cycle, the approximation is computed using smoothing
on fine levels and solving on the coarsest level.

With growth of the size of the problems that are being solved, the size of
the problems on the coarsest grid is also growing and their solution can become
a computational bottleneck. In practice the problems on the coarsest-grid are
often solved approximately, for example by Krylov subspace methods or direct
methods based on low rank approximation; see, e.g., [1, 2]. The accuracy of the
coarsest-grid solver is typically determined experimentally in order to balance
the cost of the solves and the total number of multigrid cycles required for
convergence.

In this talk, we present an approach to analyzing the effect of approximate
coarsest-grid solves in the multigrid V-cycle method for symmetric positive defi-
nite problems. We discuss several stopping criteria derived based on the analysis
and suggest a strategy for utilizing them in practice. The results are illustrated
through numerical experiments.
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Abstract

A signed graph is a pair (G,Σ), where G is an undirected graph (we allow
parallel edges but no loops) and Σ ⊆ E(G). The edges in Σ are called odd,
while the other edges are called even. If (G,Σ) is a signed graph with vertex-set
V = {1, . . . , n}, S(G,Σ) is the set of all real symmetric n×n matrices A = [ai,j ]
with ai,j > 0 if i and j are adjacent and connected by only odd edges, ai,j < 0
if i and j are adjacent and connected by only even edges, ai,j ∈ R if i and j are
adjacent and connected by both even and odd edges, ai,j = 0 if i and j are not
adjacent, and ai,i ∈ R for all vertices i. The parameter ν(G,Σ) is defined as the
largest nullity of any positive semidefinite matrix A ∈ S(G,Σ) satisfying the
Strong Arnold Hypothesis. This invariant is closed under taking minors. Arav,
Hall, van der Holst, and Li gave a forbidden minor characterization of the class
of signed graphs (G,Σ) with ν(G,Σ) ≤ 2. In this talk we present a topological
characterization of the class of signed graphs (G,Σ) with ν(G,Σ) ≤ 2.
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Abstract

We consider the MEP A(x, λ) = 0

(A10 + λ1A11 + λ2A12 + · · ·+ λnA1n)x1 = 0,
· · ·

(An0 + λ1An1 + λ2An2 + · · ·+ λnAnn)xn = 0,
(1)

where Aij ∈ Cmi×mi , ∥xi∥2 = 1 for i, j = 1, 2, · · · , n; λ = (λ1, · · · , λn) and
x = x1 ⊗ · · · ⊗ xn are eigenvalue and eigenvector, respectively.

In [1], the (1) is associated with the following simultaneous eigenvalue prob-
lem (SEP)

λ1∆0x = ∆1x,
· · ·

λn∆0x = ∆nx.
(2)

If the MEP (1) is nonsingular, i.e., the associated matrix ∆0 is nonsingular,
the eigenvalues of (1) agree with the eigenvalues of (2). However, several practi-
cal problems yield singular MEPs, which is still a challenge to current numerical
methods.

In [2], a total degree homotopy method for general MEPs, including singular
ones, is proposed. However, the method suffers from generating invalid paths,
which becomes a significant obstacle for large sparse problems.

We propose a homotopy continuation method overcoming this obstacle by
exploiting the sparse structure of coefficient matrices for general MEPs. For
large sparse problems, our method generates significantly less invalid paths than
method in [2].
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Abstract

In the context of spectral solution methods for partial differential equations on
metric graphs, the efficient computation of quantum graph spectra is of utmost
importance. Under a quantum graph, we here for simplicity understand a metric
graph equipped with the negative second order derivative acting on each edge
and Neumann-Kirchhoff coupling conditions at the vertices. The spectrum of
the quantum graph is then understood as the spectrum of the differential oper-
ator acting on the metric graph.
The special situation where all edges in the graph have the same length has been
discussed in [1] using a well-known connection of quantum and combinatorial
graph spectra. For the general case, we show that we can relate the spectrum to
a so-called Nonlinear Eigenvalue Problem (NEP): Find eigenvalues λ > 0 such
that a nontrivial v with

H(λ)v = 0

exists. Interestingly, the size of the matrix H is given by the number of vertices
of the graph. The solutions of the NEP can be found as the roots of det(H(λ))
applying for example the Newton-trace method [3] with suitable initial guesses.
To find these, we present a workflow to approximate non-equilateral graphs by
extended equilateral graphs [2]. Moreover, we investigate polynomial approxi-
mations of H and apply standard NEP solvers for polynomial problems.

Acknowledgements: This work was supported by Hypatia.Science, an ini-
tiative for the promotion of young female scientists at the Department of Math-
ematics and Computer Science of the University of Cologne.
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Abstract

The eigenvector-dependent nonlinear eigenvalue problem (NEPv) is a special
type of eigenvalue problem where we seek to find k eigenpairs of a Hermitian
matrix function H : Cn,k → Cn,n that depends nonlinearly on the eigenvec-
tors itself. That is, we have to find V ∈ Cn,k with orthonormal columns and
Λ ∈ Ck,k such that H(V )V = V Λ.
NEPv arise in a variety of applications, most notably in Kohn-Sham density
theory and data science applications such as robust linear discriminant analysis
[2]. A widely used algorithm to solve NEPv is the self-consistent field (SCF)
iteration, which originates from Kohn-Sham density theory.

In this talk, we want to view NEPv as the set of nonlinear matrix equations

F (V,Λ) =

[
H(V )V − V Λ
V HV − Ik

]
= 0 (1)

and present a novel algorithm for solving this problem using Newton’s method.
Note that Newton’s method has been successfully applied to (1) in vectorized
form with the drawback of being relatively slow for larger problems due to the
quadratic growth of the size of the vectorized problem [1].
In our approach, we apply Newton’s method on a matrix level using the Fréchet
derivative of F and exploit the structure of the problem by using a global
GMRES-approach to solve the Newton-update equation efficiently. This al-
lows us to solve larger problems without a significant slow down compared to
the SCF method.
We provide numerical results that show the performance of our algorithm on
NEPv originating from different applications. These results indicate that the
matrix-Newton approach can compete with SCF in terms of computational time
and accuracy.

Acknowledgements: The research that lead to this talk was initiated by a
joint work with Dr. Philip Saltenberger.
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Abstract

Multi-view clustering has been widely used in recent years in comparison to
single-view clustering, for clear reasons, as it offers more insights into the data,
which has brought with it some challenges, such as how to combine these views
or features. Most of recent work in this field focuses mainly on tensor repre-
sentation instead of treating the data as simple matrices. This permits to deal
with the high-order correlation between the data which the based matrix ap-
proach struggles to capture. Accordingly, we will examine and compare these
approaches, particularly in two categories, namely graph-based clustering and
subspace-based clustering. We will conduct and report experiments of the main
clustering methods over a benchmark datasets.
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Abstract

Let m,n ≥ 2 be integers. Denote by Mn the set of n× n complex matrices.
Given a positive integer k ≤ n and a real number p > 2, the (p, k) norm of a
matrix A ∈ Mn is defined by

‖A‖(p,k) =

[
k∑

i=1

spi (A)

] 1
p

,

where s1(A), . . . , sk(A) are the largest k singular values of A. We show that a
linear map φ : Mmn → Mmn satisfies

‖φ(A⊗B)‖(p,k) = ‖A⊗B‖(p,k) for all A ∈ Mm and B ∈ Mn

if and only if there exist unitary matrices U, V ∈ Mmn such that

φ(A⊗B) = U(ϕ1(A)⊗ ϕ2(B))V for all A ∈ Mm and B ∈ Mn,

where ϕs is the identity map or the transposition map X �→ XT for s = 1, 2.
The result is also extended to multipartite systems.
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Abstract

Let m,n ≥ 2 be integers. Denote by Mn the set of n× n complex matrices.
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linear map φ : Mmn → Mmn satisfies
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Abstract

One of the most popular method for computing the matrix logarithm is a
combination of the inverse scaling and squaring method in conjunction with
a Padé approximation [1]. Recently, [2] presented Taylor based algorithm us-
ing matrix polynomial evaluation methods which are more efficient than the
Paterson–Stockmeyer method [3] in the sense of number of matrix-matrix mul-
tiplications. The maximum theoretical efficiency would allow evaluating a poly-
nomial degree 2k for cost k matrix products (M), k = 1, 2, . . . [3, Prop. 2],
denoted by the optimal degree [4]. However, a nonlinear polynomial system
must be solved which may not have a solution, or even if a solution exist, it may
be numerically unstable [3, Sec. 3.1]. In [3, 5] the cases for optimal degrees 2k

with cost kM for k = 3, 4, are analytically solved. Other evaluation formulas
are used in [2] for Taylor based approximations of the matrix logarithm with
costs greater than 4M , however, they are far from the optimal degree. In this
work the iterative approach from [4] is used with an objective to obtain an ac-
curate and efficient min–max approximations for costs greater than 4M . A new
algorithm is provided generalizing a scaling and squaring method, maintaining
a high efficiency but also opening up to a relative backward error analysis. Sim-
ulations on benchmark matrices indicate that the new method is more efficient
than state-of-the-art codes with a higher accuracy in comparison to Padé-based
approaches.
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KTH Royal Institute of Technology in Stockholm.

References



25th Conference of the International Linear Algebra Society (ILAS 2023)

248	 Madrid, Spain, 12-16 June 2023

[1] A.H. Al-Mohy, N.J. Higham, Improved Inverse Scaling and Squaring Al-
gorithms for the Matrix Logarithm. SIAM J. Sci. Comput., 34: C153–169
(2012).
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Abstract

Vector majorization is a classical notion useful in many areas of mathematics
and its applications. There are many ways to define majorizations for real ma-
trices, generalizing the notion of vector majorization. Different types of matrix
majorizations have been applied to different areas of research. For example, di-
rectional majorization is useful in economics, while row-stochastic majorization
plays an important role in the theory of statistical experiments. We introduce a
new concept of majorization, which generalizes several existing notions of ma-
trix majorization, for the families of matrices. The motivation to study this
notion comes from mathematical statistics and involves the information con-
tent of experiments. We investigate properties of this order both of algebraic,
combinatorial, and geometric character. In particular, our results include: the
characterization of so-called minimal cover classes; properties of majorizations
on the sets of (0,1) and (-1,0,1) matrices; the characterization of matrix maps
preserving or converting majorizations.
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ABSTRACT   

Last semester I taught a course on matrix theory, using the Problem Solving before 
Instruction pedagogy. 

 In the beginning of each week problems were explained but not solved. They were due, as 
homework, by the end of the week and in the beginning of the following week the solutions 
were discussed and new problems were given. 

In the talk I will give examples and describe what the students thought of this way of 
learning. 
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Abstract Magic tricks are a powerful tool to create interest into
mathematical subjects. From a historical point of view, the solution of linear

systems of equations has been presented as “magical” in old books. The
construction of magic squares is also related to linear algebra concepts, as well
as some tricks where the idea of basis plays an important role. In this talk we

shall pose some problems related to this topic that can be used as a
motivational tool in the classroom. We shall also perform a bunch of linear

algebra related magic tricks in order to show how this topics can be brought to
the classroom.
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Abstract

In this talk I will describe a student-centred approach to engaging learn-
ers with proof writing and proof comprehension in a second university linear
algebra course for mathematics specialists. This novel approach makes use
of group-based activities, peer-to-peer feedback, and pairwise comparison of
student-generated proofs. By creating structured opportunities to repeatedly
engage in robust and meaningful mathematical discourse, we claim our novel
approach has scope to add variety and substance to the often narrow array of
assessment activities seen in similar classrooms. We present preliminary quan-
titative evidence for the construct validity of two tasks, alongside qualitative
evidence suggesting that these tasks led students to engage in productive math-
ematical discourse.

Acknowledgements: This is joint work with Dr Ben Davies from the Univer-
sity of Southampton in the UK
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Abstract 
 

This work aims to present several features of the GeoGebra software as a 
technological tool for teaching quadratic forms in a Linear Algebra and Analytic 
Geometry course, particularly in the study of Conic Sections and Quadric 
Surfaces, highlighting their potential and possible contributions. Several studies 
[1] and [2] present, discuss and highlight the use of technology and its 
implications in the teaching and learning of Linear Algebra. The methodology 
used in this work is characterized as being of the qualitative type, focusing on the 
STEAM approach (Science, Technology, Engineering, Arts, and Mathematics), 
which favors the discovery by students of the theory obtained through practice in 
the construction of knowledge through the elaboration of conjectures, testing of 
hypotheses and validation of results. In this research we will present two 
activities: the first linked to the study of the ellipse equation and the other related 
to the paraboloid (?) equation. As a result, we emphasize that in a dynamic, 
interactive, and intuitive way, GeoGebra allows exploring the objects of study 
both from an algebraic, geometric, and numerical point of view, greatly helping 
the study of quadratic forms. 

 
Joint work with Rui Duarte (University of Aveiro). 

 
 

Acknowledgments: Work supported by University of Aveiro – Portugal.  
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Abstract

Visualizations are an important part of mathematics explorations and es-
pecially of mathematics teaching and learning. Linear algebra stands at the
pivotal position of mathematics learning and right on the crosroads of exploring
analogies and generalizations rising from elementary geometric and proportion-
ality principles. Therefore, the intuitive value and power of visualizations are
even more important in linear algebra learning. Generally, when we consider
visualizations, we think about illustrative geometric presentations by different
graphs and scatches. In modern times computer illustrations present a great op-
portunity for a skilled teacher but also a challenging trap for careless or sloppy
approach. With modern technology it is much easier to manipulate student’s
attention then it is to motivate their understanding. We shall explore some
samples of good and motivating visualizations and some of the manipulative
implementations with little or negative teaching value.
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Abstract

In the United States, early Linear Algebra courses emphasized operator theory
and were mainly designed for Mathematics majors. Linear Algebra became a
standard required course for Mathematics majors in the 1960s. In the following
decades, more and more outside disciplines began requiring Linear Algebra and
it became increasingly clear that the existing courses were not well suited to the
vast majority of students. In this talk, we discuss early efforts to address this
problem and to reform linear algebra education. The talk will focus mainly on
the efforts of the Linear Algebra Curriculum Study Group, the ILAS Education
Committee, and the work done by the ATLAST Project. The speaker will
close with a few personal recommendations which are based on over 40 years of
experience teaching Linear Algebra.
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Abstract

There is a simple, inexpensive, easy-to-build, and easy-to-operate device
(adapted from [1]) that can be used in the classroom to demonstrate to stu-
dents the physical reality of eigenvectors. In this talk I will show you that
device, and tell a bit about how I have used this in various settings, both under-
graduate and graduate, since the 1980’s. Although I have used it primarily in
lecture/demonstration mode, there is considerable scope for adapting this to a
more hands-on, direct-engagement-by-students mode. I look to you, the linear
algebra community, to develop such adaptations. As time permits, we will also
hear about some preliminary classroom experiences with this device from Raf
Vandebril and Fernando De Terán.
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Abstract

There has always been a great concern about the teaching of mathematics
in engineering degrees. This concern has increased because students have less
interest in these studies, which is mainly due to the low motivation of the
students towards mathematics, and which is derived in most cases from the lack
of awareness of undergraduate students about the importance of mathematics
for their career.

The aim of this work is that students achieve a greater engagement in first
academic courses of engineering degrees, through the implementation of real
and technological applications in the teaching and learning of Linear Algebra
concepts.
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Abstract

Students of linear algebra at the University of Galway were presented with a
weekly task of the form Give an example of - a matrix or linear transformation
with some specified property, or a matrix model of their own design, or an
object that meets or narrowly misses the criteria of some definition. This talk
will share some responses, that reveal insightful or creative thinking on the part
of the authors, or reveal possible unintended consequences of certain teaching
approaches.

We will argue that (some) tasks of this nature can engage students in au-
thentic and creative mathematical practice, and present opportunities to develop
and exercise a sense of personal agency.
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Abstract

We present some innovative activities carried out in Neotrie VR software
[1] with students of the first year of mathematics at the University of Alme-
ria ([2], [3]). These include the relative position of three planes, the use of a
graphing calculator to represent parametric equations of planes, the creation of
editable points, lines and planes in space, with parallelism and perpendicularity
constraints, or the visualization of affine transformations in space.

Acknowledgements: Work partially supported by the Ministry of Science
and Innovation grant PID2020-117971GB-C22 and FEDER-Junta de Andalućıa
grant UAL2020-SEJ-B2086.
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Abstract

In this talk, we will examine the structure of linear algebra proofs and their
nature. We will identify some proof techniques relying on the absence of a prop-
erty. We will also explore the existing structure that connects and condenses
powerful ideas. In particular, we show the visual power of matrices and their role
in building, capturing, and condensing abstract ideas. We will conclude with
some instructional insights from our experiences teaching proof-based second
courses in linear algebra.
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Abstract

We assess the situation of our elementary Linear Algebra classes in the
US holistically and through personal history recollections. Possible reme-
dies for our elementary Linear Algebra’s teaching problems are discussed
and a change from abstract algebraic taught classes to a concrete matrix
based first course is considered. The challenges of such modernization
attempts for this course are laid out in light of our increased after-Covid
use of e-books and e-primers.

We specifically address the useless and needless, but ubiquitous use of
determinants, characteristic polynomials and polynomial root finding
methods that are propagated in our elementary text books and are used
in the majority of our elementary Linear Algebra classes for the matrix
eigenvalue problem but that have no practical use whatsoever and offer
no solution for finding matrix eigenvalues.

This paper challenges all mathematicians as we have misinformed and
miseducated our students badly for decades in elementary Linear Alge-
bra now and urges a switch to a new, fully matrix theoretical approach
that covers all classical subjects in a practical and computable way.
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Spectra of normal Cayley graphs

Arnbjörg Soffıa Árnadóttir1

1 DTU Compute, Technical University of Denmark, Denmark
E-mail: sofar@dtu.dk

Abstract

A normal Cayley graph for a group G is a Cayley graph whose connection
set is a union of conjugacy classes of G. Such a graph lies in an association
scheme and its spectrum can be calculated using the irreducible characters of
G. In this talk, we will explore these connections between groups, association
schemes and character theory.

Acknowledgements: Work supported by Independent Research Fund Den-
mark, 8021-00249B AlgoGraph
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NEPS of Complex Unit Gain Graphs
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Abstract

A complex unit gain graph, or T-gain graph, is a gain graph whose gains
belong to the multiplicative group of complex units. Generalizing a classical
construction for simple graphs due to Cvektović [1], and its extension to signed
graphs due to Germina et al. [2], we give a suitably defined non-complete
extended p-sums (NEPS, for short) of T-gain graphs. Structural properties of
NEPS like balance and some spectral properties and invariants of their adjacency
and Laplacian matrices are considered, including the energy and the symmetry
of the adjacency spectrum.

Acknowledgements: The authors are are grateful to GNSAGA of InDAM for
the support provided.
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Clique complexes of strongly regular
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Abstract

It is well known that non-isomorphic strongly regular graphs with the same
parameters must be cospectral (have the same eigenvalues). We investigate
whether the spectra of higher order Laplacians associated with these graphs
can distinguish them. In this paper, we study the clique complexes of strongly
regular graphs, and determine the spectra of the triangle complexes of Hamming
graphs, Triangular graphs and several other strongly regular graphs. In many
cases, the spectrum of the triangle complex distinguishes between strongly reg-
ular graphs with the same parameters, but we Þnd some examples where that
is not the case.

Acknowledgements: This research has been partially supported by NSF
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25th Conference of the International Linear Algebra Society (ILAS 2023)

278	 Madrid, Spain, 12-16 June 2023

Probing the Structure of Graph Nullspaces with Zero Loci

Joshua Cooper, Grant Fickes

Department of Mathematics, University of South Carolina, Columbia, SC USA
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The adjacency nullity of graphs and hypergraphs is something of a mystery, though some results
are known for narrow classes of graphs such as trees. There is, however, rich structure in their
nullspaces (and, for hypergraphs, their nullvarieties), visible by partitioning nullvectors according
to their zero loci: vertex sets which are indices of their zero coordinates. This set system is the
lattice of flats of a “kernel matroid”, a subsystem of which are the “stalled” sets closed under skew
zero forcing (SZF), a graph percolation/infection model known to have connections with rank and
nullity. These set systems have interesting descriptions in terms of matchings, vertex covers, and
edges’ influence on rank – especially for trees. For a wide variety of graphs, the lattice of SZF-
closed sets is also a matroid, a fact which can be used to obtain a polynomial-time algorithm for
computing the skew zero forcing number. This contrasts with the general case, where we show that
the corresponding decision problem is NP-hard. We also define skew zero forcing for hypergraphs,
and show that, for linear hypertrees, the poset of SZF-closed sets is dual to the lattice of ideals
of the hypergraph’s nullvariety; while, for complete hypergraphs, the SZF-closed sets and the zero
loci of nullvectors are more loosely related.
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On Sidorenko’s conjecture for
determinants and Gaussian Markov

random fields

Péter Csikvári1, Balázs Szegedy2
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Abstract

We study a class of determinant inequalities that are closely related to
Sidorenko’s famous conjecture (also conjectured by Erdős and Simonovits in a
different form). Our main result can also be interpreted as an entropy inequality
for Gaussian Markov random fields (GMRF). We call a GMRF on a finite graph
G homogeneous if the marginal distributions on the edges are all identical. We
show that if G is bipartite, then the differential entropy of any homogeneous
GMRF on G is at least |E(G)| times the edge entropy plus |V (G)|?2|E(G)|
times the point entropy. We also show that in the case of non-negative cor-
relation on edges, the result holds for an arbitrary graph G. The connection
between Sidorenkos conjecture and GMRF’s is established via a large deviation
principle on high dimensional spheres combined with graph limit theory. It is
also observed that the system we study exhibits a phase transition on large
girth regular graphs. Connection with Ihara zeta function and the number of
spanning trees is also discussed.
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Abstract

The k-token graph Fk(G) of a graph G is the graph whose vertices are the
k-subsets of vertices from G, two of which being adjacent whenever their sym-
metric difference is a pair of adjacent vertices in G. Recently, it was conjectured
that the algebraic connectivity (or second Laplacian eigenvalue) of Fk(G) equals
the algebraic connectivity of G. In this paper, we first give results that relate
the algebraic connectivities of a token graph and the same graph after removing
a vertex. When applied to 2-tokens graphs, these results allow us to prove the
conjecture for three infinite families: the odd graphs Or for all r, the multipar-
tite complete graphs Kn1,n2,...,nr

for all n1, n2, . . . , nr, and the cycle graphs Cn.
In the case of cycles, we present a new method that allows us to compute the
whole spectrum of F2(Cn). As a consequence, we prove that the conjecture also
holds for uniclyclic graphs.

Acknowledgements: This research has been supported by AGAUR under
project 2021SGR00434 and MICINN under project PID2020-115442RB-I00.
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[5] C. Dalfó, M. A. Fiol, M. Miller, J. Ryan, and J. Širáň, An algebraic approach
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On classes of diminimal trees
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Abstract

As usual, a tree is an acyclic and connected graph, and its diameter is the
maximum number of edges on a path connecting two of its vertices. A tree
T with vertex set [n] = {1, . . . , n} and diameter d ∈ {0, . . . , n − 1} is said to
be diameter-minimal (or diminimal) if there exists a real symmetric matrix
M = (mij) ∈ Rn×n such that:

(i) For all i ̸= j, mij ̸= 0 if and only if {i, j} is an edge of T .

(ii) The spectrum of M contains exactly d+ 1 distinct eigenvalues.

A tree T satisfying (i) is said to be the underlying graph of M , and we let S(T )
denote the set of symmetric matrices with underlying tree T .

The definition of diminimal tree was motivated by a result of Leal-Duarte and
Johnson [6], which states that, for any symmetric matrix M whose underlying
graph is a tree T of diameter d, the number µ(M) of distinct eigenvalues of M
is at least d+ 1. This implies that

q(T ) := min{µ(M) : M ∈ S(T )} ≥ d+ 1. (1)

The authors of [6] asked whether the inequality in (1) was actually an equation.
As it turns out, in general, the answer is no, and there exist trees Td of any
given diameter d ≥ 6 for which q(Td) > d + 1. Examples of this behavior may
be found in [2, 4, 5], for instance. Note that the trees for which (1) holds with
equality are precisely the diminimal trees defined above. A matrix M ∈ S(T )
such that q(T ) = µ(M) is called a minimal matrix associated with T .

In this talk, I shall survey recent results about diminimal trees. The em-
phasis will be on recent results in collaboration with Allem, Braga, Oliveira,
Sibemberg and Trevisan [1], which describe infinite families of diminimal trees.
More precisely, we start with a decomposition by Johnson and Saiago [4], by
which each tree T of diameter d is associated with one of a finite set Cd of ‘irre-
ducible’ trees, known as seeds, with the property that T can be generated from
the corresponding seed by a sequence of diameter-preserving operations known
as branch duplications. For every d ≥ 6, we then identify two seeds of diameter
d (if d is even) and three seeds of diameter d (if d is odd) with the property that
any tree generated from them by a sequence of branch duplications is dimini-
mal. This result is proved by induction. Interestingly, the induction hypothesis
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is much stronger. For instance, minimal matrices associated with different trees
in the family may be chosen with the same set of eigenvalues. Moreover, it is
possible to perturb some values in this set in a way that there exist minimal
matrices with the new set of perturbed eigenvalues. One of the main technical
tools is an eigenvalue location algorithm by Jacobs and Trevisan [3].

Acknowledgements: Work partially supported by Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior (Proj. MathAmsud 88881.694479/2022-
01), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (Proj.
19/2551-0001727-8) and Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-
nológico (Proj. 315132/2021-3).
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Spectra of Trees

Thomás Jung Spier

Dpt. of Computer Science, Universidade Federal de Minas Gerais, Brazil
E-mail: thomasjung@dcc.ufmg.br

Abstract

In this talk, we explore some recent results about the spectrum of trees. We
show applications for the study of strong cospectrality [1, 4, 5, 6], perfect state
transfer [2, 5, 6] and integral trees [3, 5, 6].

This is joint work with Emanuel Juliano and Gabriel Coutinho.

Acknowledgements: Author acknowledges the funding from FAPEMIG that
supported this research.
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Abstract

Inside the class of chordal graphs, there are two subclasses called k-trees and
k-paths that have maximal cliques and minimal vertex separators with constant
sizes (k+ 1 and k, respectively). A k-tree can be defined recursively as follows:
a complete graph on k vertices is a k-tree, and a k-tree on n + 1 vertices can
be determined by adding to a k-tree on n vertices a new vertex adjacent to k
mutually adjacent vertices [2]. A k-path is a k-tree with only 2 simplicial vertices
[9]. By definition, we conclude that 2-trees and 2-paths do not contain subgraph
homeomorphic to K5 and K3,3, so they are planar graphs [6]. Moreover, 2-paths
not contain subgraph homeomorphic to K4 and K2,3 and its number of edges is
2n− 3, consequently they are maximal outerplanar graphs [7],[4].

Spectral properties of planar and outerplanar graphs have been studied as
we can see in [1],[8],[10],[11],[12]. Cvetković et al., [5], and Boots et al., [3],
conjectured which planar and outerplanar graphs have the maximum spectral
radius. Tait, M. and Tobin, J., [10], proved these conjectures for n large enough.
In 2021, Lin e Ning, [8], show the conjecture for outerplanar is true for all
n ≥ 2 except for n = 6. Yu et al., [11], present upper bounds for the signless
Laplacian spectral radius of planar graphs, outerplanar graphs and Halin graphs
in terms of order and maximum degree. Moreover, presents extremal graphs for
the signless Laplacian spectral radius for a special type of outerplanar graph,
without inner triangles, which are 2-path graphs. Yu et al., [12], analyzed some
extremal results for the spectral radius of Aα− matrix (or α− index). Besides,
proved that the only outerplanar graph with maximum α− index is K1 ∨Pn−1.
Barrière et al., [1], analyzed the asymptotic behavior for the maximum value
of the second smallest eigenvalue of the Laplacian matrix, that is, algebraic
connectivity, of planar bipartite and outerplanar graphs with a fixed number of
vertices.

In this paper, we present some results for the maximum value of algebraic
connectivity of maximal outerplanar and 2-path graphs when the number of
vertices is fixed.
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Abstract

Spectral hypergraph theory mainly concerns using hypergraph spectra to
obtain structural information about the given hypergraph. This field has at-
tracted a lot of attention over the last years. The spectrum of a hypergraph
can be defined in different ways. In this talk, we will focus on the spectrum
of two well-known hypergraph representations: adjacency tensors and integer
matrices with entries defined by the number of edges that two vertices share.
Two hypergraphs are cospectral if they share the same spectrum with respect
to a certain representation. By studying cospectral hypergraphs, we aim to
understand which hypergraph properties cannot be deduced from their spec-
tra. In this talk, we will show new methods for constructing cospectral uniform
hypergraphs.



25th Conference of the International Linear Algebra Society (ILAS 2023)

288	 Madrid, Spain, 12-16 June 2023
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Abstract

The Nonnegative Inverse Eigenvalue Problem (NIEP) is the problem of char-
acterizing all possible spectra of entrywise nonnegative matrices, or equivalently,
all possible spectra of weighted digraphs. Note that a nonnegative matrix can
be seen as the adjacency matrix of a weighted digraph. In this talk we make a
brief overwiew of what is known about the problem and its variations. Finally,
we discuss when zero is an eiegenvalue of the weighted digraphs whose adjacency
matrix is weakly diagonally dominant, showing the connection of this with the
parity of the greatest common divisor of the cycle lengths of the digraph.
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Abstract

Introduced by Zhan [2], a vertex-face walk is a type of discrete-time quantum
walk on the arcs of an orientable map (i.e. a cellularly embedded graph on an
orientable surface). The unitary transition matrix for the walk is the product
of two reflections corresponding to the incidence relations between the arcs
and the vertices and faces of the map. If the initial state of the walk is a
uniform superposition of the arcs incident to some vertex u, and if after some
number of steps in the walk, the state is a superposition of arcs incident to
some other vertex v, we say that there is perfect state transfer (PST) from u
to v. The walk is periodic at u if v = u. We give families of examples of maps
that exhibit perfect state transfer and periodicity. We also show that, under
some projection, the evolution of any two-reflection discrete-time quantum walk
satisfies a Chebyshev recurrence.
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Abstract

Can we characterize a graph by its spectrum? In 2003, van Dam and
Haemers conjectured that the answer is positive for almost all graphs [1]. This
conjecture, which plays a special role in the graph isomorphism problem, has
only been solved for some specific families of graphs. In this talk, we use a
switching method to prove that the answer is negative for some graph classes
in the Johnson and Grassman schemes.
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Abstract

A biindependent pair in a bipartite graph G = (V1 ∪ V2, E) is a pair (A,B),
where A ⊆ V1, B ⊆ V2 and the union A∪B is independent in G. The parameters
g(G) and h(G) are defined, respectively, as the maximum product |A| · |B|
and the maximum ratio |A|·|B|

|A|+|B| taken over biindependent sets in G. These

parameters are NP-hard to compute and have applications for bounding the
maximum product-free sets in groups and for bounding the nonnegative rank of
a matrix. In this talk we define semidefinite programming bounds for g(G) and
h(G) and show that they they can be seen as quadratic variations of the Lovász
ϑ-number ϑ(G). In addition, we formulate a closed-form eigenvalue bounds,
which coincide with the semidefinite bounds for edge-transitive graphs.
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Marie Sk�lodowska-Curie Actions Grant Agreement No. 813211 (POEMA).
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Abstract

The famous Hermite-Biehler Theorem [1, 2] states that a real polynomial
f(x) = p(x2)+xq(x2) is Hurwitz stable (all of the roots of f lie in the open left
half-plane) if and only if the leading coefficients of p and q have the same sign
and all the roots of p(−x2) and xq(−x2) are real and interlace. More generally,
the number and relative positions of the nonnegative roots of p(−x) and q(−x)
determine the number of roots of f which lie in the left (or right) half-plane.

The Nonnegative Inverse Eigenvalue Problem (NIEP) asks for a character-
isation of those lists of complex numbers which are realisable as the spectrum
of some (entrywise) nonnegative matrix. An important special case arises when
the Perron eigenvalue is the only root of the characteristic polynomial f in the
right half-plane, and, in this special case, a complete characterisation was given
by Laffey and Šmigoc [3] which employed a rather long and technical argument.

By examining the relationship between the roots of f and those of p and
q from a simple algorithmic perspective, we give a new—and perhaps more
elegant—proof of the Laffey-Šmigoc characterisation which provides a deeper
insight into the result.

Acknowledgements: Work (partially) supported by Science Foundation Ire-
land under grant 11/RFP.1/MTH/3157.
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Abstract

We denote by J(a, b) the real symmetric Jacobi matrix with main diagonal
a = (a1, . . . , an) and secondary diagonals b = (b1, . . . , bn−1), where b > 0. Our
aims are to characterize the spectra of nonnegative irreducible symmetric Jacobi
matrices of size n ≤ 6 and also to obtain all realizations by Jacobi matrices of
this type. Our work is strongly based on the characterizations given by S.
Friedland and A.A. Melkman in their celebrated 1979 paper.
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Abstract

Karpelevič [1] described Θn, the region in the complex plane consisting of
all eigenvalues of all stochastic matrices of order n. The boundary of Θn is a
disjoint union of arcs, known as the Karpelevič arcs. Johnson and Paparella [2]
considered the question of constructing stochastic matrices realising the bound-
ary of the Karpelevič region. Kirkland and Šmigoc [3] characterized the sparsest
realising matrices for the Karpelevič arcs of order n.

We study the powers of the sparsest realising matrices characterised in [3].
In particular, we find the necessary and sufficient conditions that a sparsest
realising matrix associated with the Karpelevič arc of order n has to satisfy in
order to be a power of another stochastic matrix. We present our results in
terms of the digraphs associated with these sparsest realising matrices.

Acknowledgements: Work supported by Science Foundation Ireland (SFI)
under Grant Number SFI 18/CRT/6049.
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Abstract

Let n be an arbitrary positive integer. We consider polynomials preserving
the set of n× n nonnegative (elementwise) matrices. Let

Pn = {p ∈ C[x] : p(A) ≥ 0 for all A ≥ 0, A ∈ Rn,n}.

Loewy and London [4] defined Pn, motivated by its connection to the well
known Nonnegative Inverse Eigenvalue Problem (NIEP). Indeed, if a list Λ =
(λ1, λ2, . . . , λn) of complex numbers is the spectrum of an n × n nonnegative
matrix A, then the list p(Λ) := (p(λ1), p(λ2), . . . , p(λn)) is the spectrum of the
nonnegative matrix p(A), provided p ∈ Pn. But the investigation of Pn is of
independent interest.

The following are clear:(i) If p ∈ Pn then all its coefficients are real. (ii) If
all coefficients of p are nonnegative then p ∈ Pn. (iii) Pn+1 ⊆ Pn. Clark and
Paparella [1, 2] conjectured that Pn+1 ⊂ Pn, and proved it for n = 1, 2. Loewy
[3] proved this conjecture by showing that there exists a = a(n) > 0 such that
1 + x+ x2 + · · ·+ xn−1 − axn + xn+1 + · · ·+ x2n is in Pn but not in Pn+1. It
turns out in the proof that a(n) → 0 as n → ∞, and it is desirable to find a > 0
that is independent of n. In this talk we show such a exists.

To restrict ourselves to finite dimensional spaces, let m be a positive integer
and define Pn,m = {p ∈ Pn : degree(p) ≤ m}. Then, Pn,m can be considered
as a closed, convex cone in Rm+1. It is known that a polynomial p ∈ Pn,2n can
have only one negative coefficient, namely that of xn. We discuss the possible
number of negative coefficients of p ∈ Pn,m for m > 2n.

Finally, it is of interest to know whether Pn,m is a polyhedral cone. We show
that P2,m is nonpolyhedral for every m ≥ 4.
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Abstract

The Nonnegative Inverse Eigenvalue Problem (NIEP) consists of the char-
acterization of the lists of complex numbers that are spectra of nonnegative
matrices. We say that a list Λ = {λ1, . . . , λn} is realizable if it is the spectrum
of a nonnegative matrix. We say that the realizable list Λ is universally realizable
if, for every possible Jordan canonical form allowed by Λ, there is a nonnegative
matrix with spectrum Λ. The Universal Realizability Problem (URP) consists
of the characterization of the lists that are universally realizable.

In terms of n, the NIEP is completely solved only for n ≤ 4, and for n = 5
with trace zero. It is clear that for n ≤ 3 the concepts of universally realizable
and realizable are equivalent. The URP is also solved for n ≤ 4 and for n = 5
with trace zero in the real case, and the solutions are different to the NIEP. In
this talk we study the universal realizability of nonreal spectra of size 5 with
trace zero on the border of realizability. We use techniques from Graph Theory
and Linear Algebra.

Acknowledgements: Work supported by grant PGC2018-096446-B-C21 funded
by MCIN/AEI/ 10.13039/501100011033, “ERDF A way of making Europe”
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Abstract

The Real (respectively, Symmetric) Nonnegative Inverse Eigenvalue Problem
(RNIEP - respectively, SNIEP) deals with characterizing the possible real spec-
tra of entrywise nonnegative (respectively, symmetric nonnegative) matrices.
Any list of real numbers which is the spectrum of an entrywise nonnegative (re-
spectively, symmetric nonnegative) matrix is said to be realizable (respectively,
symmetrically realizable).

Among all realizable lists a subclass has been identified as those ‘realizable
by compensation’ (in short, C-realizable), which was shown in [1] to include
most of the subclasses associated with sufficient realizability conditions known
so far in the RNIEP. Later on, it was proved in [2] that any C-realizable list is
in particular symmetrically realizable.

In this talk we present a combinatorial characterization of C-realizable lists,
first for the special case of zero-sum lists [3], and then for arbitrary ones. One of
the consequences of this characterization is that the set of zero-sum C-realizable
lists is the union of polyhedral cones whose faces are described by equations
involving only linear combinations with coefficients 1 and −1 of the entries in
the list. Lists with positive sum are C-realizable if and only if there exists a
shifted version with zero sum satisfying the aforementioned conditions.

Acknowledgements: Work (partially) supported by Grant PGC2018-096446-
B-C21 funded by MCIN/AEI/10.13039/501100011033, and Grants MTM2017-
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Abstract

A list Λ = {λ1, λ2, . . . , λn} of complex numbers is said to be realizable if it is
the spectrum of a nonnegative matrix. Λ is said to be universally realizable
(UR) if it is realizable for each possible Jordan canonical form allowed by Λ.
In this paper, using companion matrices and applying a procedure by Šmigoc,
is provided a sufficient condition for the universal realizability of left half-plane
spectra, that is, Λ = {λ1, . . . , λn} with λ1 > 0, Reλi ≤ 0, i = 2, . . . , n. It is
also shown how the effect of adding a negative real number to a not UR left
half-plane list of complex numbers, makes the new list UR, and a family of left
half-plane lists that are UR is characterized.
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E-mail: angeles.carmona@upc.edu
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Abstract

Green’s function has been a powerful tool for solving differential equations or
partial differential equations with boundary conditions since the work of George
Green. Green’s function is the resolvent kernel for problems raised in terms of
the Laplace operator. In the discrete setting; i.e., when considering networks,
kernels can be seem as matrices and hence the Green’s function is nothing more
than the group inverse (singular case) or the inverse (nonsingular case) of the
Laplacian matrix. Hence, it is crucial to know both properties and expressions
for Green’s functions in order to understand the properties fulfilled by solution
of the raised problems. For instance, in the setting of networks Green’s functions
appear in relation with discrete vector calculus, random walks, machine learning,
pagerank problems, and so on. We will review some of the main properties and
goodness of Green’s functions.
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Abstract

Capacity is an important concept in potential theory and electrical engi-
neering. It is a non-additive generalization of a measure and captures both the
“size” of a set and its “shape”.
The definition of capacity can be generalized to a graph G = (V,E) based on the
Dirichlet form E(f) :=

∑
E [f(u)− f(v)]2 where the sum runs over all adjacent

vertices {u, v} ∈ E in the graph and f : V → R is a function on the vertices. The
capacity cap(A,B) between two disjoint non-empty sets A,B ⊂ V is defined as

cap(A,B) := min {E(f) : f(A) = 0, f(B) = 1} .

Song et al. [1] studied the reciprocal of cap(A,B) as a generalization of the
effective resistance and showed, for instance, how to calculate the capacity using
Kron reduction or based on the Moore–Penrose pseudoinverse Laplacian of a
modified graph — this follows because E(f) is the quadratic form determined
by the graph Laplacian.

A first new result discussed in this talk is the following:

Theorem 1 (Capacity is submodular)

cap(T,A∪B) ≤ cap(T,A)+cap(T,B)−cap(T,A∩B) for all A,B ⊆ V \T . (1)

For a fixed set T , the function cap(T, ·) is a function on subsets of V \T , and
inequality (1) says that this set function is submodular. Submodularity is a
strong property with many applications, for instance related to optimization
and multi-criteria decision making [2, 3].

A second new result relates capacity to the following result of Fiedler [4]: the
vertices of a graph G can be embedded φ : V → R|V |−1 such that cap(a, b) =
1/∥φ(a)−φ(b)∥2 for all vertices a, b ∈ V , and the resulting points φ(V ) are the
vertices of a simplex.

Theorem 2 (Capacity is inverse distance) The capacity between two sets
A,B is the inverse squared distance between the faces with vertices φ(A), φ(B):

cap(A,B) =
1

d2(φ(A), φ(B))
,

where d(φ(A), φ(B)) is the Euclidean distance between the affine subspaces gen-
erated by the points φ(A), φ(B).
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Abstract

Diffusion is an ubiquitous phenomenon present in many physical, biological
and social systems. However, in the last decades, researchers have discovered
many examples of so-called anomalous diffusion, arising because of the presence
of long range interactions or memory effects. Anomalous diffusion is character-
ized by the presence of power laws in the time evolution of full-width at half-
maximum and and the maximum probability (Pmax ∝ t−γ), such that γ < 0.5
can be identified with subdiffusive systems and γ > 0.5 with superdiffusive ones.

Several tools have been derived to analyze anomalous diffusion, many of
them based on continuous time random walks (CTRW) and fractional diffu-
sion equations [1]. However, most of these approaches neglected the networked
structure of many of these systems. To overcome this limitation of previous
models, we present here, based on the results published in [2], a generalized dif-
fusion equation for networks, using Caputo time-fractional derivatives to model
memory effects and d-path Laplacian operators [3] to model long-range inter-
actions. We analytically proved that the solution of this equation is able to
recreate diffusive, subdiffusive and superdiffusive scenarios, and found the pa-
rameter regimes where the different types of anomalous diffusion appear. We
also performed computational simulations that confirm the presence of super-,
sub- and diffusive regimes. Finally, we tested the practical applicability of our
generalized diffusion equation by modelling the movement of proteins through
a DNA chain.
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Abstract

In the classical potential theory on the Euclidean space and in the potential
theory of transient Markov chains a unique decomposition of superharmonic
functions into a harmonic and a potential part is well-known. In this talk
the basic concepts and ideas to gain such a decomposition for non-negative
Schrödinger operators on weighted infinite graphs will be shown. The talk is
based on joint work with Matthias Keller, see [1].
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port.
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Abstract

Combinatorial expressions of the inverse of the adjacency matrix non-singular
unicyclic graph were given in [1]. In this work, we extend those results to edge-
weighted unicyclic graphs.

Based in the characterization of non-singular unicyclic graphs was given by
Guo, Yan and Yeh, see [2], we give three families of edge-weighted unicyclic
graphs, called Class WI, Class WIIa and Class WIIb, and find a combinato-
rial formula for the inverse of adjacency matrix in each family. The inverse
of an edge-weighted non-singular unicyclic graph U is the sum of the matrix
WInv1(U) and, if necessary, a correction matrix, WInv2(U) or WInv3(U), de-
pending on the class to which the underlying unicyclic graph of U belongs. We
show that an edge-weighted unicyclic graph of Class WIIb can be singular.

We prove that the minimum rank of the family of zero-diagonal matrices of
order n, whose underlying graph is a non-singular unicyclic graph, is n if its
underlying graph is of Class I or IIa, and is n − 2 if its underlying graph is of
Class IIb. We prove that the singularity of a matrix whose underlying graph is
of Class IIb is forest stable and cyclic unstable.
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Abstract

In this manuscript we show the central role of the group inverse of the Lapla-
cian in the study of random walks on networks. Moreover, we take advantage
of the relation of group inverse and equilibrium measures and we obtain ex-
pressions for the mean first passage time and for Kemeny’s constant in terms of
equilibrium measures. For networks with symmetries we can obtain the analytic
expression of the above parameters such as distance bi-regular graphs or barbell
networks.
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E-mail: alvaro.samperio@uva.es

Abstract

The problem of recovering the conductances of a well-connected spider net-
work with boundary from its Dirichlet-to-Robin map is ill-posed for large net-
works, so despite there is an exact algorithm to solve it [1], the resulting network
is very different from the original one. This problem is the discrete analogous
to Calderon’s Inverse Problem, in which knowing a-priori that the conductiv-
ity is piecewise constant with a bounded number of unknown values makes the
problem Lipschitz stable [2].

We propose to introduce the hypothesis analogous for the discrete problem
that the conductances are constant in each element of a partition of the set
of edges with a small number of elements and we formulate the problem as a
polynomial optimization one, in which we minimize the difference between the
Dirichlet-to-Robin map of the recovered network and the given one plus a term
which penalizes the deviation from this hypothesis. We show examples in which
we are able to accurately recover the conductances solving this problem.
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Abstract

Periodic Jacobi operators arise naturally in many quantum mechanics prob-
lems and form an important class of operators, both in pure theoretical interests
and in many applied mathematics problems. We can formulate the well-known
inverse spectral theory problems and spectral gap issues of such operators in
terms of the spectral theory of block Toeplitz operators. We consider the clas-
sical result proved by Göran Borg in 1946[1], and its discrete versions. This
theorem states that the periodic potential of the one-dimensional Schrödinger
operator is constant almost everywhere if and only if its spectrum is connected.
The discrete version and generalizations of the result were also known since
1975 (see [2] for, eg.). Such results are referred to as Borg-type theorems. In
this talk, I will present a short survey on the recent developments in this area,
including the pseudospectral analogues.
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E-mail: andrii.dmytryshyn@oru.se
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Abstract
In this talk, we will describe the generic complete eigenstructures of complex
Hermitian n× n matrix pencils with rank at most r (with r ≤ n). To do this,
we prove that the set of such pencils is the union of a finite number of bundle
closures, where each bundle is the set of complex Hermitian n× n pencils with

the same complete eigenstructure (up to the specific values of the finite
eigenvalues). We also obtain the explicit number of such bundles and their
codimension. The cases r = n, corresponding to general Hermitian pencils,
and r < n exhibit surprising differences, since for r < n the generic complete
eigenstructures can contain only real eigenvalues, while for r = n they can
contain real and non-real eigenvalues. Moreover, we will see that the sign

characteristic of the real eigenvalues plays a relevant role for determining the
generic eigenstructures of Hermitian pencils.
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Abstract

Generic matrix polynomials with symmetries and bounded rank are known
only in the case when their grade is odd [1, 2]. In this presentation, we adress
the even-grade case. To be exact, we show that the set of m×m complex skew-
symmetric matrix polynomials of even grade d, i.e., of degree at most d, and
(normal) rank at most 2r is the closure of the single set of matrix polynomials
with the certain, explicitly described, complete eigenstructure. This complete
eigenstructure corresponds to the most generic m×m complex skew-symmetric
matrix polynomials of even grade d and rank at most 2r.
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Abstract
In this talk we will present the connection between bounded rank

perturbations of matrix pencils, and the general matrix pencil completion
problem. We shall discuss situations in which double general matrix pencil
completion problem can be reached. In particular, the idea of minimality in

both problems will be explained. Recent result on bounded rank perturbations
of matrix pencils without non-trivial homogeneous invariant factors will be

given as an example.
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Abstract

The description of the sets of matrix pencils with bounded rank r was pre-
sented in [1] and [3] from two different perspectives. In [1], these sets are
described as the union of the closures of a small number of sets with certain
Kronecker canonical forms. In contrast, in [3], the same sets are described in a
completely explicit way as the union of certain sets of pencils expressed as the
product of two pencils with rank r and with specified grades for the columns
of the first factor and the rows of the second factor. Such a explicit product
description was fundamental for characterizing the generic change of the partial
multiplicities of regular matrix pencils under low-rank perturbations [2]. In the
case of the sets of polynomial matrices of bounded rank and bounded degree,
a description similar to that in [1] in terms of a few generic eigenstructures
was presented in [4], but a description in terms of a product of two polynomial
matrices with rank r and with specified grades for their columns and rows, re-
spectively, is not yet available in the literature. We present such a description
in this talk.
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Abstract

Eigenstructure assignment using low-rank perturbations problems is useful
in many control engineering applications and has recieved a lot of attention in
recent years. In this talk, we focus on eigenvalue assignment of regular Hermitian
matrix pencils of the form

λE−A+(αλ−β)uuH , E = EH ∈ Cn×n, A = AH ∈ Cn×n, α, β ∈ R, u ∈ Cn.

In contrast to the unstructured case, i.e. when E and A are not necessarily
Hermitian it is known that arbitrary eigenvalue configurations are possible after
a single unstructured rank-one perurtbation [1].

Using the Thompson canonical form and by analyzing the characteristic
signs, we are able to determine the possible eigenvalue configurations after Her-
mitian rank-one perturbations.
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Abstract

In this talk we will discuss small rank perturbations of H-expansive and H-
unitary matrices paying particular attention to the location of eigenvalues of
these matrices with respect to the unit circle.
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Abstract

There is a lot of recent work on low-rank perturbations of matrix pencils,
some of them consider generic perturbations and some others consider non-
generic perturbations. Most of the results for non-generic perturbations are
mainly based on the estimation of invariant factors and the concept of ma-
jorization of finite sequences.

In this talk we follow a different approach, treating rank-one perturbations
only. Our goal is to obtain perturbation results for matrix pencils via the Weyr
characteristic of their kernel or range representations (which are some related
linear relations).

Recent results for perturbations of linear relations describe the change of the
Weyr characteristic under perturbations [1, 2], and allow to give bounds for the
change of the Weyr characteristic of the perturbed matrix pencil. The choice
whether to use kernel or range representation depends on the appearance of the
rank-one pencil.

This is talk is based in a joint work with Hannes Gernandt, Friedrich Philipp
and Carsten Trunk.
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Abstract

While the regular generalized eigenvalue problem is well understood and
many algorithms for its solution have been developed, the singular generalized
eigenvalue problem has been a challenge for many decades. Only recently, se-
veral new algorithms for its solution have been suggested.

One particular approach to tackle the problem is a method based on applying
rank-completing perturbations that was developed in [1]. These perturbations
have a rank equal to the size of the given singular pencil minus its normal rank
so that they “complete” the rank of the singular pencil to full rank. Generically,
such a perturbation results in a regular matrix pencil whose set of eigenvalues
contains the eigenvalues of the original singular matrix pencil (called true eigen-
values) as well as additional random eigenvalues. The true eigenvalues can be
separated from the random eigenvalues by using special orthogonality relation
of the corresponding left and right eigenvectors.

In the talk, we show how the method from [1] can be developed further,
to obtain a more efficient method that uses projection to a random regular
subpencil of the original singular pencil rather than a perturbation. In this
way, the method can also be applied to rectangular pencils. Another focus
will be on structure preservation, i.e., on investigating the case of Hermitian
pencils (i.e., both coefficient matrices are Hermitian) or pencils with a related
symmetry structure. This case is challenging, because left and right eigenvalues
may coincide which will lead to difficulties in separating the true eigenvalues
from the random eigenvalues.
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Abstract

Port-Hamiltonian (pH) systems are an ubiquitous modeling class for many phys-
ical systems. The pH class has many important properties, in particular, stabil-
ity of the system is guaranteed via the associated Hamiltonian which represents
a Lyapunov function. In the linear case the only part of the system that may
not be asymptotically stable is associated with purely imaginary eigenvalues.
Although stability is guaranteed, to achieve asymptotic stability it is then nec-
essary to carry out a stabilization via output feedback. For pH systems then
the effects of the involved dissipation term (which leads to the part of the sys-
tem which is asymptotically stable) and the part of the feedback (which has to
move purely imaginary eigenvalues from the imaginary axis) are intertwined,
so that often the necessary feedback is of very low rank. In this talk we will
characterize the necessary feedback structure via a canonical form under unitary
transformations and show how a minimal norm, minimal rank feedback can be
constructed.

References

[1] F. Achleitner, A. Arnold, and V. Mehrmann. Hypocoercivity and hypocon-
tractivity concepts for linear dynamical systems. Electronic Journal of Lin-
ear Algebra Vol. 38, 883–911, 2023.

[2] N. Gillis, V. Mehrmann, and P. Sharma, Computing nearest stable matrix
pairs. Numerical Linear Algebra with Applications, Vol. 25, e2153, 2018.

[3] C. Mehl, V. Mehrmann, and M. Wojtylak, Linear algebra properties of dis-
sipative Hamiltonian descriptor systems SIAM Journal Matrix Analysis and
Applications, Vol. 39, 1489–1519, 2018.

[4] V. Mehrmann and B. Unger, Control of port-Hamiltonian differential-
algebraic systems and applications, http://arxiv.org/abs/2201.06590, 2022.
Acta Numerica, to appear, 2023.



25th Conference of the International Linear Algebra Society (ILAS 2023)

Madrid, Spain, 12-16 June 2023	 335

Eigenvalues of rank one perturbations of
singular M-matrices

André Ran1
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Abstract

Let H be an (entrywise) nonnegative matrix, then A = ρ(H)I − H is a
singular M-matrix. With the exception of zero, all eigenvalues of A are in the
open right half plane. Let v and w be nonnegative vectors, and consider for
t > 0 the matrix B(t) = A+ tvwT .

In the talk we will discuss the following results. All real eigenvalues of B(t)
are nonnegative, and there is a t0 > 0 such that for 0 < t < t0 the matrix B(t)
has all its eigenvalues in the open right half plane. This does not extend to all
t > 0 in general, except for the two-dimensional case. In the three dimensional
case, under an additional condition there is a t1 such that B(t) has all its
eigenvalues in the open right half plane for t > t1, but this does not extend to
any higher dimension.

Acknowledgements: The work is based on research supported in part by the
National Research Foundation of South Africa (Grant Number 145688).
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Rank-one perturbation of linear
relations via matrix pencils
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Abstract

Associated to a matrix pencil two linear relations can be defined: the ker-
nel and the range representations. In [3] the Weyr characteristic of a linear
relation is introduced, the relationship between the Weyr characteristic of a
pencil and that of their two representations is investigated, and the results are
used to estimate the invariant characteristics of matrix pencils under rank one
perturbations.

We go back on the rank-one perturbation problem of linear relations and,
using the above relationship, we characterize in terms of the Weyr characteristics
of two linear relations S and T , when T is a rank-one perturbation of S. We
show that this problem can be stated as a pencil completion problem, and we
provide a solution using the results of [1] and [2].

Acknowledgements: Work supported by grant PID2021-124827NB-I00 funded
by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Eu-
rope”, by the “European Union”.
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Combinatorics in matrix pencils
completion and rank perturbation

problems
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Abstract
In bounded rank perturbation problems of matrix pencils, and related matrix

pencils completion problems, frequently one encounters combinatorial
problems involving partitions of integers and polynomial chains – a problems
of independent combinatorial interest. We will give an overview of some of the
most interesting and important combinatorial results, as well as some open

problems, with a particular emphasis on the ones that recently had
applications in matrix pencils perturbation problems.
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Kernel and range representation of
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Abstract

Let A− λE be a matrix pencil with square or rectangular matrices A,E.
A representation of the form

{
(Ez,Az) : z ∈ C

d
}

is called image representation. Similarly, a representation of the form

{(x, y) : Ax = Ey} = ker [A,−E]

is called kernel representation.
Obviously, the kernel and the range representation are subspaces of a larger

vector space. We are interested in the connection (spectrum, eigenvalues etc.)
between the pencil and its kernel and range representation. These concepts are
well-known in the literature, see, e.g., [1, 2], but were not used (so far).

Acknowledgements: This is based on joint papers with Thomas Berger (Pader-
born, Germany), Hannes Gernandt (Berlin), Francisco Mart́ınez Peŕıa (La Plata,
Argentina), Friedrich Philipp (Ilmenau) and Henrik Winkler (Ilmenau).
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An interlacing result for Hermitian
matrices in Minkowski space
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Abstract

The well known interlacing problem is studied, but here we consider the
result for Hermitian matrices in the Minkowski space, an indefinite inner product
space with one negative square. More specific, we consider the n × n matrix

A =

[
J u

−u∗ a

]
with a ∈ R, J = J∗ and u ∈ Cn−1. Then A is H-selfadjoint

with respect to the matrix H = In−1 ⊕ (−1). The canonical form for the pair
(A,H) plays an important role and the sign characteristic coupled to the pair
is also discussed. Inspired by some of the results in the paper [1].

Acknowledgements: Work partially supported by DSI-NRF Centre of Excel-
lence in Mathematical and Statistical Sciences.
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Jordan-like decompositions of linear
relations
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Abstract

Let H be a finite-dimensional linear space. Any subspace of H× H can be con-
sidered as a linear relation. Each linear relation has a direct sum decomposition
with respect to the following three types of linear relations:

1. multishifts, i.e., injective operators without eigenvalues;

2. Jordan relations, i.e., relations with a finite number of eigenvalues (includ-
ing possibly ∞), which are made up of Jordan chains;

3. completely singular relations, i.e., multivalued relations which are made
up of so-called singular chains; their eigenvalues fill up the set of complex
numbers including ∞.

In particular, the structure of symmetric linear relations in indefinite-inner prod-
uct spaces H is considered.

Acknowledgements: This talk is based on a joint work with Thomas Berger
(Paderborn), Timo Reis (Ilmenau), Henk de Snoo (Groningen), and Carsten
Trunk (Ilmenau).
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Rank one perturbations of matrices
with applications in graph theory
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Abstract

The problem of rank one perturbations of a matrix seems to be well studied.
The behaviour of eigenvalues of A+ τuv∗ is described globally and locally. We
will review some results from [1] and show how they fit in the harmonic analysis
on graphs setting. In particular we will talk about quadratically embaddable
graphs. Joint work with Andre Ran and Marek Skrzypczyk will be presented.
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Majorization and properties on Spectral
geometric mean
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Abstract

In this talk, we will introduce the relation between the metric geometric
mean, spectral geometric mean and Wasserstein mean of the positive deÞnite
matrices in terms of (weak) log-majorization relation. In addition, we will also
introduce some new properties of the weighted spectral geometric mean, like
geodesic property and tolerance relation.

Acknowledgements: The work of L. Gan partially supported by AMS-Simons
Travel Grant 2022–2024.
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Abstract

An important task for interpolation problems and statistics on symmetric
spaces is the efficient computation of (geometric) means of data and in par-
ticular the computation of midpoints of smooth curves connecting two data
points. While closed form solutions for the so called endpoint geodesic prob-
lem on general symmetric spaces are well known, often explicit exponentiation
of matrices and/or SVD computations are still required. In most cases, these
computations are rather expensive. We present much simpler closed form ex-
pressions for the particular case of Grassmannians, where only constant, linear
and quadratic functions in the data points and scalar trigonometric functions
are involved. We also comment on the general idea putting other important
symmetric spaces, compact and noncompact ones, into perspective.

Acknowledgements: The first author has been supported by German BMBF-
Projekt 05M20WWA: Verbundprojekt 05M2020 - DyCA. The second author
has been supported by Fundação para a Ciência e Tecnologia (FCT) under the
project UIDP/00048/2020.
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Abstract

We call a matrix algorithm superfast (aka running at sublinear cost) if it
involves much fewer flops and memory cells than the matrix has entries. Using
such algorithms is highly desired or even imperative in computations with Big
Data, which involve immense matrices and are quite typically reduced to com-
putation of low rank approximation (LRA) of an input matrix. Any superfast
LRA algorithm falls miserably on some inputs, even if using randomization is
allowed, but we prove that some superfast LRA algorithms output reasonable
or even nearly optimal solutions for a large input class. Moreover, we propose,
analyze, and test a novel superfast algorithm for iterative refinement of any
crude but sufficiently close low rank approximation of a matrix. The results of
our numerical tests are in good accordance with our formal study.

Acknowledgements: Our work has been partially supported by NSF Grants
CCF–1116736, CCF–1563942 and CCF–1733834 and PSC CUNY Award 69813
00 48.
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Abstract

We investigate Euclidean and Riemannian gradient equations on the open
convex cone Pm of all m×m positive definite Hermitian matrices

∇




m
j=1

wjd
2
W (X,Aj)


 = F (X)

where dW denotes the Wasserstein metric, and F is a differentiable map on
Pm. The special case where F (X) = 0 is the equation vanishing the gradient
of the weighted sum of squares of the Wasserstein metrics. Its unique solution
is known as the Wasserstein mean of A1, . . . , An. We show the existence and
uniqueness of the solution for these non-homogeneous gradient equations, and
furthermore, establish the boundedness of solutions.

Acknowledgements: The work of J. Hwang was supported by Basic Science
Research Program through the National Research Foundation of Korea(NRF)
funded by the Ministry of Education (No. NRF-2022R1I1A1A01068411). The
work of S. Kim was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1A2C40
01306).
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Abstract

The open convex cone of positive definite Hermitian matrices has two im-
portant Riemannian geometries [1, 2], where the weighted geometric (Cartan)
means and Wasserstein means appear as the corresponding geodesics. In this
talk we discuss their linearity problem, which means when the Cartan and
Wasserstein geodesics lie in the space of spanned by two given positive defi-
nite matrices. We give a complete characterization for the Cartan geodesic and
partially for the Wasserstein geodesic.

Acknowledgements: The work of Sejong Kim is supported by the National
Research Foundation of Korea grant funded by the Korea government (MSIT)
(No. NRF-2022R1A2C4001306).
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Matrix/Operator Mean Lagniappe
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Abstract

In my professional home state of Louisiana (USA), the word “lagniappe” is
frequently used for a bonus, something extra that is often unanticipated. Math-
ematical research sometimes provides lagniappe, new and unexpected results
that go beyond the original field of inquiry. In recent research in the area of
Matrix and Operator Geometric Means, I have had two significant experiences
of such lagniappe, which will be the focus of my presentation. The first is,
as far as I can tell, a previously unknown converse to the foundational inverse
function theorem of analysis. In its simplest form the converse states that if
a Cr-function f has a Lipschitz inverse f−1 on a neighborhood of f(x), then
f ′(x) is invertible. The second arose in the intensive study of the Cartan (al-
ternatively Karcher or least squares) mean in the setting of positive definite
2 × 2-matrices of determinant 1, denoted SPD2. It was recognized that this
space can serve as a model for three-dimensional hyperbolic geometry, which
gives rise to new computational tools for the geometry and geometric tools for
the matrix theory. We provide some illustrations.

Acknowledgements: Work partially supported by the Louisiana State Uni-
versity Boyd Support Fund.

References

[1] J.D. Lawson. An inverse function theorem converse. J. Math. Anal. Appl.,
486: 6 pp. (2020)

[2] J.D. Lawson, Y. Lim. From hyperbolic geometry to 2×2 Hermitian matrices
and back. Journal of Geometry, 112: 15 pp. (2021).



25th Conference of the International Linear Algebra Society (ILAS 2023)

Madrid, Spain, 12-16 June 2023	 353

Regression on the manifold of fixed rank
positive semidefinite matrices

Hosoo Lee

Elementary Education Research Institute, Jeju National University, Korea
E-mail: hosoo@jejunu.ac.kr

Abstract

We consider the problem of finding a geodesic curve that best fits a given
set of time-labelled points on the manifold of fixed rank positive semidefinite
matrices. Building upon the polar decomposition of vectors in the plane, we
develop a quotient geometry for the manifold of fixed rank positive semidefi-
nite matrices. The natural metric decomposes as the sum of the Riemannian
metric on the cone of positive definite matrices and the standard metric of the
Grassman manifold. The quality of a geodesic curve is measured by a term that
penalizes its lack of fit to the data. The corresponding objective function is
determined by the natural metric.
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Abstract

We consider the problem of finding a geodesic curve that best fits a given
set of time-labelled points on the manifold of fixed rank positive semidefinite
matrices. Building upon the polar decomposition of vectors in the plane, we
develop a quotient geometry for the manifold of fixed rank positive semidefi-
nite matrices. The natural metric decomposes as the sum of the Riemannian
metric on the cone of positive definite matrices and the standard metric of the
Grassman manifold. The quality of a geodesic curve is measured by a term that
penalizes its lack of fit to the data. The corresponding objective function is
determined by the natural metric.
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Abstract

Over the past few years, many of the tasks coming from computer vision and
image analysis require averaging manifold-valued data. Examples include, but
are not limited to, filtering, training, clustering, visualization, segmentation,
classification, recognition, grouping and motion analysis [3]. Matrix Lie groups
and quotient spaces play a crucial role in these applications, since they are the
natural representatives of symmetries. Due to the lack of a linear structure in
those spaces, the standard averaging schemes cannot be applied and therefore
generalizations of the concept of mean were required. The mean in the context
of Riemannian geometry, introduced originally by E. Cartan in the 1920s, has
had a great impact on the progress of various fields of science and technology.
Typically, we are given a finite set of points and look for a point that minimizes
the sum of the squared geodesic distances to each one of the given points.

In this work, the Riemannian mean is obtained through a limiting process
of a variational problem whose extremals are piecewise geodesics that best fit
a given set of data points [1]. We will then make an incursion through matrix
manifolds that play important roles in vision applications, such as, the orthog-
onal group, the real Grassmannian [2] and the set of symmetric and positive
definite matrices.

Acknowledgements: Work supported by Fundação para a Ciência e Tecnolo-
gia (FCT) under the project UIDP/00048/2020.
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Abstract

There are several variants of Heron type means on the positive definite cone
A++ in a (unital) C∗-algebra A. Among them, we mention the conventional
Heron mean defined as (

A1/2 +B1/2

2

)2

,

the Kubo-Ando type Heron mean defined as

A1/2

(
I + (A−1/2BA−1/2)1/2

2

)2

A1/2 =
A+B + 2A�B

4
,

(where � denotes the Kubo-Ando geometric mean) and the recently introduced
Wasserstein mean

A+B +A(A−1�B) + (A−1�B)A

4
.

Apparently, for commuting elements A,B in A++, those three means all co-
incide. In the talk, we discuss the converse question: whether the equality
of any two of those three means for a particular pair of elements implies the
commutativity of those elements.

From the conventional Heron mean we easily get a well-behaving operation
on positive definite cones. Indeed, if we multiply it by 4, we obtain a semigroup
operation that also satisfies the so-called bisymmetry equation:

(A ◦B) ◦ (C ◦D) = (A ◦ C) ◦ (B ◦D).

In this talk, we study questions to what extent do analogous algebraic properties
hold for the Kubo-Ando type Heron mean and for the Wasserstein mean?

Besides pointing out certain weaker forms of associativity appearing in the
theories of non-associative algebras (especially in loop theory), a typical result
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among the ones that we are going to present is the following. Denote by � the
operation obtained from the Kubo-Ando type Heron mean (by multiplying it
by 4). Let A be a C∗-algebra and let A,B ∈ A++. Then the equality

(X �A) �B = X � (A �B)

holds for all X ∈ A++ if and only if B−1/2AB−1/2 is a central element (it
commutes with all elements of A).

From this, we immediately obtain the following. Assuming that there exists
an element A ∈ A++ such that

(X �A) � Y = X � (A � Y )

holds for all X,Y ∈ A++, the algebra A is necessarily commutative.

Acknowledgements: This work has been supported by the project TKP2021-
NVA-09 provided by the Ministry of Innovation and Technology of Hungary
from the National Research, Development and Innovation Fund, financed under
the TKP2021-NVA funding scheme. The research has also been supported by
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Abstract

In this talk we will investigate zeros of nonlinear operators in a Thompson
metric space. Inspired by the work of Gaubert and Qu from 2014, we study
exponentially contracting continuous and discrete time flows generated by these
nonlinear operators. We establish the operator norm convergence of determinis-
tic and stochastic resolvent and proximal type algorithms, in particular versions
coming from a Trotter-Kato type formula. This generalizes recent strong law
of large numbers and so called ’nodice’ results proved for the Karcher mean
of positive operators by Lim and Pálfia. Applications include generalization
of these results from the Karcher mean to other, so called generalized Karcher
means introduced in 2016. The talk is based on an ongoing joint work with
Léka Zoltán and Zsigmond Tarcsay.

Acknowledgements: Work partially supported by the Hungarian National
Research, Development and Innovation Office NKFIH, Grant No. FK128972
and by project TKP2021-NVA-09. Project no. TKP2021-NVA-09 has been im-
plemented with the support provided by the Ministry of Innovation and Tech-
nology of Hungary from the National Research, Development and Innovation
Fund, financed under the TKP2021-NVA funding scheme.
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Operator means of positive definite
compact operators and their properties
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Abstract

Matrix geometric mean has been interests to many mathematicians in the
last few decades and its connection with Riemannian structure of positive matri-
ces has been widely explored, see [2, 3]. This connection was further explored for
positive Hilbert-Schidmt operators in [5]. Matrix inequalities has been a subject
of interest for many mathematicians and a complementary Golden-Thompson
trace Inequality was proved by Hiai and Petz in [4]. In their proof, they used
the following limit related to geometrix mean of inequalities:

lim
r→0

(Ar#tB
r)1/r = e(1−t)logA+tlogB .

It is also related to symmetric form of Lie-Trotter formula given as:

lim
r→0+

(A(1−t)r/2BtrA(1−t)r/2) = e(1−t)logA+tlogB .

These limit has also been studied when r → ∞, under the name Reciprocal
Lie-Trotter formula, see [1]. Only the existence of limit is known and no closed
form formula is known for such a limit. We will present various properties of
matrix exponentials and corresponding inequalities for operator mean of positive
compact operators.
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Abstract

The Grassmann manifolds Grn,k(F) appear in the form of the set of k-
dimensional subspaces of Fn, the space of rank k orthogonal projectors P : Fn →
Fn, where F is the real field or the complex field. They can be identified with
the symmetric space O(n)/(O(k)×O(n−k)) for the real case and U(n)/(U(k)×
U(n−k)) for the complex case. Motivated by the geometric mean of two positive
definite matrices [1], the mid-point of two elements in Grn,k(F) is defined as their
geometric mean [2]. Geometric inequalities will be presented in the context of
elliptical geometry. The dual geometry (hyperbolic) and its implication, for
example, Hua’s inequality [3], will be discussed.
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Abstract

The talk is concerned with efficient numerical methods for solving a linear
system ϕ(A)x = b, where ϕ(z) is a ϕ-function and A ∈ RN×N . More specifically,

we are interested in the computation of ϕ(A)
−1

b for the case where ϕ(z) =

ϕ1(z) =
ez − 1

z
, ϕ(z) = ϕ2(z) =

ez − 1− z

z2
. A fast numerical algorithm for

computing ψ1(A) and ψ1(A)b with ψ1(z) = 1/ϕ1(z), ϕ1(z) =
ez − 1

z
, has been

presented in [1, 2]. The algorithm exploits a partial fraction decomposition of
the meromorphic function ψ1(z) and it is particularly suited for the application
to structured matrices for which fast linear solvers exist. The same approach
cannot be extended to other functions ψℓ(z) = 1/ϕℓ(z) with ℓ > 1 due to the
lack of explicit closed–form expressions of their poles. In this talk we discuss
some iterative schemes based on the algorithm introduced in [1, 2] for computing

both ϕ2(A)
−1

and ϕ2(A)
−1

b [3]. These schemes relies on Newton’s iteration for
matrix inversion and Krylov-type linear solvers. Adaptations of these schemes
for structured matrices are considered. In particular the cases of banded and
more generally quasiseparable matrices are investigated. Numerical results are
presented to show the effectiveness of our proposed algorithms.
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Abstract

The Wright function is a generalization of the exponential function defined by

Wλ,µ(z) :=
∞∑

n=0

zn

n! Γ(λn+ µ)
, λ > −1, µ ∈ C.

Although several representations of the Wright function have been introduced
and many of its analytical properties have already been well-studied (see, e.g.,
[2, 3, 4, 5]), its numerical evaluation is still an active research area.

In this talk we present a new algorithm for the efficient computation of a
particular expression of the Wright function of interest in applications, namely

fλ,µ(t;x) := tµ−1Wλ,µ(−|x|tλ), t ≥ 0, x ∈ R, λ ∈ (−1, 0), µ ∈ C.

This algorithm is based on the numerical inversion of the Laplace transform

fλ,µ(t;x) =
1

2πi

∫

C
estFλ,µ(s;x)ds, Fλ,µ(s;x) = s−µe−|x|s−λ

.

To determine the contour C which is a suitable deformation of the Bromwich line
and the number of quadrature nodes, we use the error analysis for obtaining a
result with a certified bound. The proposed procedure is innovative with respect
to previous attempts in the literature because it avoids dealing with oscillatory
integrals and is fairly easy to implement.

We present some numerical experiments that validate both the theoretical
estimates of the error and the applicability of the proposed method for repre-
senting the solutions of fractional differential problems, [1].

Acknowledgements: Work partially supported by GNCS-INdAM.
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Abstract

Joint work with Stefano Cipolla, Michela Redivo-Zaglia
and Yousef Saad.

In computational sciences it is often necessary to obtain the limit of a se-
quence of elements of a vector space that converges slowly to its limit or even
diverges.

In some situations, we may be able to obtain a new sequence that converges
faster by modifying the method that produces it. However, in many instances,
the process by which the sequence is produced is hidden into a black box.

Thus, a solution is to transform this sequence into a new sequence which,
under some assumptions, converges faster.

Among these general techniques Shanks’ transformation is arguably the best
all-purpose method for accelerating the convergence of sequences.

The aim of this talk is to present a general framework for Shanks’ transfor-
mation(s) of sequences of elements in a vector space.

This framework includes the Minimal Polynomial Extrapolation (MPE), the
Reduced Rank Extrapolation (RRE), the Modified Minimal Polynomial Ex-
trapolation (MMPE), the Topological Shanks transformation (TEA and STEA
algorithm), and in some sense also Anderson Acceleration (AA).

Their application to the solution of systems of linear and nonlinear equations
will be discussed.
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Abstract

We aim here at approximating the symbol of a linear operator A by us-
ing numerical data and fitting procedures; the symbol is assumed to be a real
and positive function φ of the wavelength λ, and in practice, a function of the
eigenvalues λh of a matrix A that corresponds to the discretization of A.

We propose to adapt the matrix trace estimator developed in [2] to successive
distinct spectral bands in order to build a piecewise constant function as an
approximation of φ. To decompose the spectral interval into band of frequencies,
we propose several approaches, from the formal spectral to the multigrid one
[1, 4]. Rational approximations to the symbol can then be proposed.

We apply the numerical procedure for capturing an additional linear damp-
ing term in hydrodynamics models [3, 5].
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d’Opale, LMPA, 50 rue F. Buisson, 62228 Calais-Cedex, France.

E-mail: anas.elhachimi1997@gmail.com
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Abstract

The need to know a few singular triplets associated with the largest singu-
lar values of third-order tensors arises in data compression and extraction. This
paper describes a new method for their computation using the t-product. Meth-
ods for determining a couple of singular triplets associated with the smallest
singular values also are presented. The proposed methods generalize available
restarted Lanczos bidiagonalization methods for computing a few of the largest
or smallest singular triplets of a matrix. The methods of this paper use Ritz
and harmonic Ritz lateral slices to determine accurate approximations of the
largest and smallest singular triplets, respectively. Computed examples show
applications to data compression and face recognition.
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Abstract

The talk is concerned with efficient numerical methods for solving a linear
system ϕ(A)x = b, where ϕ(z) is a ϕ-function and A ∈ RN×N . More specifically,

we are interested in the computation of ϕ(A)
−1

b for the case where ϕ(z) =

ϕ1(z) =
ez − 1

z
, ϕ(z) = ϕ2(z) =

ez − 1− z

z2
. A fast numerical algorithm for

computing ψ1(A) and ψ1(A)b with ψ1(z) = 1/ϕ1(z), ϕ1(z) =
ez − 1

z
, has been

presented in [1, 2]. The algorithm exploits a partial fraction decomposition of
the meromorphic function ψ1(z) and it is particularly suited for the application
to structured matrices for which fast linear solvers exist. The same approach
cannot be extended to other functions ψℓ(z) = 1/ϕℓ(z) with ℓ > 1 due to the
lack of explicit closed–form expressions of their poles. In this talk we discuss
some iterative schemes based on the algorithm introduced in [1, 2] for computing

both ϕ2(A)
−1

and ϕ2(A)
−1

b [3]. These schemes relies on Newton’s iteration for
matrix inversion and Krylov-type linear solvers. Adaptations of these schemes
for structured matrices are considered. In particular the cases of banded and
more generally quasiseparable matrices are investigated. Numerical results are
presented to show the effectiveness of our proposed algorithms.
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Abstract

Barycentric forms [1] appear naturally in data-driven approximation of linear
dynamical systems, by means of interpolation, and by means of least squares
fit in [2-5]. The barycentric form of rational functions allows computationally
efficient constructions of rational approximants. In this contribution, one first
goal will be to extend these classical barycentric forms to the class of second-
order systems, which appear naturally in the modeling of mechanical structures
and electro-mechanical systems.

The AAA (Adaptive Antoulas Anderson) algorithm [6] is a rational approxi-
mation tool that is used to fit a rational function to a set of data measurements.
It is a fast and robust method that was successfully extended to a series of
applications in recent years, ranging from approximation theory to system and
control theory. The AAA algorithm can also be interpreted as a data-driven
tool for reduced-order modeling of dynamical systems from frequency domain
measurements [3-4]. This is precisely the application that we have in mind for
the current contribution.

Although the AAA algorithm has already been applied for fitting linear sys-
tems with first-order dynamics (unstructured case), we present here an extension
of AAA to fitting systems with second-order dynamics (structured case). To-
ward this goal, the development of structured barycentric forms associated with
the transfer function of second-order systems is needed. These allow the con-
struction of reduced-order models from given frequency domain data, by com-
bining interpolation and least-squares fit. As in the original AAA algorithm [6],
the interpolation points are chosen based on a greedy selection criterion. Finally,
various numerical test cases including, for example, the behavior of underwater
drones and micro-mechanical gyroscopes are used to verify the developed theory.
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Abstract

In this talk we propose a rational preconditioner for an efficient numerical
solution of linear systems arising from the discretization of multi-dimensional
Riesz fractional diffusion equations. In particular, the discrete problem is ob-
tained by employing finite difference or finite element methods to approximate
the fractional derivatives of order α with α ∈ (1, 2]. The proposed preconditioner
is then defined as a rational approximation of the Riesz operator expressed as the
integral of the standard heat diffusion semigroup. We show that, being the sum
of k inverses of shifted Laplacian matrices, the resulting preconditioner belongs
to the generalized locally Toeplitz class, a wide algebra of matrix sequences that
can be linked to a function representing the asymptotic eigenvalue distribution
as the matrix size diverges. As a consequence, we are able to provide the asymp-
totic description of the spectrum of the preconditioned matrices and we show
that, despite the lack of clustering just as for the Laplacian, our preconditioner
for α close to 1 and k �= 1 reasonably small, provides better results than the
Laplacian itself, while sharing the same computational complexity.
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Abstract

Rational Krylov subspaces have become a reference tool in dimension re-
duction procedures for several application problems. When data matrices are
symmetric, a short-term recurrence can be used to generate an associated or-
thonormal basis. In the past this procedure was abandoned because it requires
twice the number of linear system solves per iteration than with the classical
long-term method. We propose an implementation that allows one to obtain
key rational subspace matrices without explicitly storing the whole orthonormal
basis, with a moderate computational overhead associated with sparse system
solves. Several applications are discussed to illustrate the advantages of the
proposed procedure.
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Abstract

Various extrapolation methods have been proposed for the regularized solu-
tion of severely ill-conditioned linear systems; see, e.g., [1, 2, 3].

In this talk, after reviewing some of these methods, an extrapolation proce-
dure for choosing the truncation parameter in TSVD/TGSVD will be presented.
Its effectiveness will be tested by numerical experiments and compared to other
existing methods.
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Abstract

We discuss various applications of trace estimation techniques for evaluating
functions of the form Tr(f(A)) where f is a certain function. The first problem
we consider that can be cast in this form is that of approximating the Spec-
tral density or Density of States(DOS) of a matrix. The DOS is a probability
density distribution that measures the likelihood of finding eigenvalues of the
matrix at a given point on the real line and it is of enormous importance in
solid state physics. Spectral densities can also be very useful in numerical linear
algebra where they can help to estimate ranks. Other common linear algebra
problems that can be solved with trace estimators are to extract the diagonal
of a matrix inverse or its trace Tr(A−1), or to count the number of eigenval-
ues of a matrix in a real interval or complex region. In particular, estimating
eigenvalue counts can be particularly important for methods that rely on ratio-
nal approximation methods, such as FEAST. Rational approximation methods
can in turn be used to estimate eigenvalue counts by exploiting trace estima-
tors. We also discuss a few similar computations that arise in machine learning
applications. Two computationally inexpensive methods to compute traces of
matrix functions will be highlighted, namely, the Chebyshev expansion and the
Lanczos Quadrature methods and a few numerical examples will be presented
to illustrate the performances of these methods.
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Abstract

The vector Epsilon-algorithm introduced by P. Wynn is a powerful method
for accelarating the convergence of vector sequences. It is well known that the
algorithm has been derived directly from the rules of scalar Epsilon algorithm,
by replacing the inverse of a real number in the scalar case, with Samelson’s
inverse of a vector, in the vector case.

In this talk, we show that other expressions of interest of generalized inverse
of vectors can be designed giving rise to new versions of the vector Epsilon-
algorithm. Moreover, all these generalized inverses can be put easily in an
unified framework, using Clifford algebra. Also, we give the necessary and suffi-
cient condition for caracterizing the kernel of the new versions of the algorthm,
where the kernel states for the set of sequences transformed by the algorithm
to stationnnary sequences.
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Computing the generalized rational
minimax approximation

Nir Sharon1
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E-mail: nsharon@tauex.tau.ac.il

Abstract

We present a unique optimization approach for estimating the minimax rational
approximation. We use the fact that the optimization problem that appears in
the uniform rational approximation is quasiconvex to define a bisection solver.
This iterative process allows us to estimate the minimax up to a prescribed
accuracy while posing additional constraints if needed. Finally, we will conclude
the talk with several examples and applications, including evaluating matrix
functions and their usage for spectrum-slicing applications.

Acknowledgements: This work was partially supported by the NSF-BSF
award 2019752
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Error bounds for the approximation of
matrix functions with rational Krylov

methods

Igor Simunec1

1 Scuola Normale Superiore di Pisa, Italy
E-mail: igor.simunec@sns.it

Abstract

In this talk we present and compare some error bounds for the approximation
of matrix vector products f(A)b and quadratic forms bT f(A)b for a Hermitian
matrix A and a vector b with a rational Krylov subspace method. The error
bounds are obtained by exploiting properties of rational Arnoldi decompositions,
the Cauchy integral formula and the residue theorem to link the matrix function
error to the residuals of shifted linear systems. This leads to both upper and
lower bounds, generalizing the bounds derived in [1] for the Lanczos method.
The accuracy of the bounds is demonstrated with several numerical experiments.
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Perfect shifts for
Hessenberg-Hessenberg pencils
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Abstract

In this talk we analyze the stability of the problem of performing a rational
QZ step with a shift that is an eigenvalue of a given regular pencil H − λK in
unreduced Hessenberg–Hessenberg form. This problem appears when downdat-
ing orthogonal rational functions with prescribed poles, i.e., remove a node from
the corresponding discrete inner product. In exact arithmetic, the backward ra-
tional QZ step moves the eigenvalue to the top of the pencil, while the rest of
the pencil is maintained in Hessenberg–Hessenberg form, which then yields a
deflation of the given shift. But in finite-precision the rational QZ step gets
“blurred” and precludes the deflation of the given shift at the top of the pencil.
In this talk we show that when we first compute the corresponding eigenvector
to sufficient accuracy, then the rational QZ step can be constructed using this
eigenvector, so that the exact deflation is also obtained in finite-precision.

If time permits, we show how the residual can be improved using a scaling
procedure and how the method can be applied to general rank structured pencils.

Acknowledgements: The first and fourth authors were partly supported by
Gruppo Nazionale Calcolo Scientifico (GNCS) of Istituto Nazionale di Alta
Matematica (INdDAM). The second author was supported by the Research
Council KU Leuven, C1-project C14/17/073 and by the Fund for Scientific Re-
search–Flanders (Belgium), EOS Project no 30468160. The third author was
supported by the Research Council KU Leuven (Belgium), project C16/21/002
and by the Fund for Scientific Research – Flanders (Belgium), project G0A9923N.
The second and third author were also supported by the Fund for Scientific Re-
search – Flanders (Belgium), project G0B0123N.
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A Short Survey on the Scrambling
Index of Primitive Digraphs

Mahmud Akelbek1

1 Department of Mathematics, Weber State University, USA
E-mail: makelbek@weber.edu

Abstract

The scrambling index of a primitive digraph is the smallest positive integer k
such that for every pair of vertices u and v, there exists a vertex w such that from
vertices u and v we can get to vertex w by a directed walk of length k. Akelbek
and Kirkland [2009] introduced and obtained an upper bound on the scrambling
index of a primitive digraph D in terms of the order and girth of D, and gave
a characterization of the primitive digraphs with the largest scrambling index.
Liu and Huang [2010] generalized the concept of scrambling index, they gave
the upper bounds on the generalized scrambling index on for various classes of
primitive digraphs. In this talk, I will present some of the recent progress and
results related to scrambling index and generalized scrambling index.
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Smallest positive eigenvalue of graphs
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Abstract

Let G be a simple graph with adjacency matrix A(G) and τ(G) denote the
smallest positive eigenvalue of A(G). This eigenvalue plays an important role
in spectral graph theory as well as in chemical graph theory. We discuss about
the bounds on the smallest positive eigenvalue of some graph classes. Extremal
graphs are also presented in most of the cases.
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Markov chains: theory and applications

Jane Breen1

1 Faculty of Science, Ontario Tech University, Canada
E-mail: jane.breen@ontariotechu.ca

Abstract

In this talk, I will discuss some results in the area of Markov chains that are
inspired by or in collaboration with Steve Kirkland. These results incorporate
techniques from spectral graph theory and combinatorial matrix theory, as well
as pull from a wide range of applications in a variety of domains.
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Reminiscences of Steve Kirkland
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Abstract

I shall recount some of my interactions and work with Steve Kirkland.
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determinants of Schröder numbers. J. Combin. Theory, Ser. B, 94: 334-351
(2005). (40)

[2] R.A. Brualdi and S. Kirkland, Totally nonnegative (0, 1)-matrices. Linear
Algebra Appl., 432: 1650-1662 (2010). (3)



25th Conference of the International Linear Algebra Society (ILAS 2023)

Madrid, Spain, 12-16 June 2023	 389

Refined inertias of full and hollow
positive sign patterns
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Abstract

For an n × n matrix A, the inertia of A is the 3-tuple i(A) = (n+, n−, n0)
where n+ + n− + n0 = n and n+, n−, n0 equal the number of eigenvalues of A
with positive, negative, and zero real parts (respectively). The refined inertia of
A is the 4-tuple ri(A) = (n+, n−, nz, 2np) where nz is the number of eigenvalues
of A equal to zero and 2np is the number of nonzero pure imaginary eigenvalues
of A (note that n0 = nz + 2np). We investigate inertias and refined inertias of
full positive sign patterns, and of sign patterns that have positive off-diagonal
entries and zero diagonal entries, i.e., hollow positive sign patterns. For positive
sign patterns, we prove that every refined inertia (n+, n−, nz, 2np) with n+ ≥ 1
can be realized. For hollow positive sign patterns, we prove that every refined
inertia with n+ ≥ 1 and n− ≥ 2 can be realized. Constructions of matrix
realizations illustrating these results are given.
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Pretty good state transfer among large
set of vertices

Ada Chan 1, Peter Sin2

1 Dept. of Mathematics and Statistics, York University, Canada
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E-mail: sin@ufl.edu

Abstract

For the continuous-time quantum walk on graphs, it is well known that
perfect state transfer can occur from a vertex to at most one other vertex. By
constrast, there is pretty good state transfer between any two vertices of degree
two in the cartesian product of a path of length two and a path of length three
[2]. Building on Godsil, Kirkland, Severini and Smith’s characterization of paths
with pretty good state transfer [1], we look for arbitrarily large sets of vertices
with pairwise pretty good state transfer in cartesian products of paths.

This is joint work with Peter Sin.

Acknowledgements: Work (partially) supported by a grant from the Simons
Foundation (#633214 to Peter Sin) and a Discovery Grant from the Natural
Sciences and Engineering Research Council of Canada (RGPIN-2021-03609 to
Ada Chan).
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On Kemeny’s constant and its
applications

Emanuele Crisostomi1, Robert Shorten2
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Abstract Kemeny’s constant has for long attracted the interest of the
research community, looking for practical explanations regarding its constancy.

Nowadays, Kemeny’s constant is recognized as a peculiar measure of the
connectivity of a network, and has found several applications in different fields,
ranging from urban networks to epidemiology, from robotic surveillance to
pollution mitigation. This talk aims at providing a quick overview of such

applications, and at identifying some distinguishing characteristics of
Kemeny’s constant.

Kemeny’s constant of a finite discrete-time Markov chain had been originally
defined as the expected time to reach a randomly-chosen state - selected with
probability proportional to its stationary distribution - starting from a fixed
initial state [1]. This parameter is surprisingly independent from the choice of
the initial state, and several papers have been devoted to motivate or interpret
the meaning of Kemeny’s constant, as in terms of the expected number of steps
before a “lost” surfer reaches the desired destination [2], or in terms of the ex-
pected number of steps before a Markov chain becomes “close” to its stationary
distribution [3]. In general, Kemeny’s constant exhibits the ability to provide a
peculiar connectivity measure of a network, and significantly differs from other
connectivity indicators.

It was proved in [4] that for an irreducible stochastic matrix T , there exists
another stochastic matrix T ∗ with the property that its non-zero entries are a
subset of the non-zero entries of T (and therefore it can be obtained without
adding extra links to the original graph), such that its Kemeny’s constant is
the minimum among the matrices with the same property. This property has a
nice interpretations in terms of traffic networks, where the nodes of the graph
correspond to roads, as this implies to stating that - in terms of random walks
- a ring road is the most convenient way to plan an urban network. Kemeny’s
constant has been also used as a ranking indicator to assess the importance of a
node, or an edge, in a graph, in terms of the loss - or increase - of connectedness
of the network after that node, or edge, is removed from the graph. Such a pos-
sibility was explored again in the context of road networks [5] to evaluate the
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importance of single roads. Kemeny’s constant has found useful applications
also in other fields than road networks. For instance, it was shown that the
minimization of Kemeny’s constant is convenient to design stochastic surveil-
lance strategies for quickest detection of anomalies in network environments.
Also, the ability of Kemeny’s constant to identify critical nodes in a network
was also used as a means to identify the individuals in a population more likely
to facilitate the spreading of a virus.

This talk will review the aforementioned applications of Kemeny’s constant,
and will try to extract and identify the peculiar characteristics of this connec-
tivity indicator which make it different from the many other existing ones.
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Abstract

A complex unit gain graph (T-gain graph), Φ = (G,φ) is a graph where
the gain function φ assigns a unit complex number to each orientation of an
edge of G and its inverse is assigned to the opposite orientation. The associated
adjacency matrixA(Φ) is defined canonically. The energy E(Φ) of a T-gain graph
Φ is the sum of the absolute values of all eigenvalues of A(Φ). In this talk, we
shall discuss some of the bounds for the energy of complex unit gain graphs
in terms of the minimum vertex degree, maximum edge degree and matching
number of the underlying graph G.
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Kemeny’s constant and Braess edges

Sooyeong Kim1
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Abstract

It is a great pleasure to give a talk in this special session as I am greatful
to Steve for his supervision during my Ph.D. This talk will be about one of his
contributions in Markov chains.

Kemeny’s constant can measure the average travel time for a random walk
between two randomly chosen vertices. So, it can serve as a proxy for identifying
an edge whose insertion increases the average travel time, as opposed to one’s
anticipation that the more edges a graph has, the less travel time a random
walker on the graph takes. Such an edge is called a Braess edge, which was
introduced by Kirkland and Zeng [1] in 2016. I will summarize what has been
studied in this area since then, and present some recent results.

Acknowledgements: This is supported by York-Fields Postdoctoral Fellow-
ship grant.
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Quantum computing and graph theory

Chi-Kwong Li
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Abstract

We discuss some matrix problems related to quantum computing and graph
theory. For example, we consider bounds for the spectral gaps of Hamiltonian
in using adiabatic quantum computing method to study graph theory problems.
We also discuss graph parameters of operator systems by considering their un-
derlying quantum channels.

Acknowledgements: Work (partially) supported by the Simons Foundation
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Perfect state transfer on trees with
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Abstract

The transfer of quantum information in a quantum computer can be mod-
elled by a spin network, which in turn is represented by a graph. There is
particular interest in perfect state transfer (PST), the scenario in which quan-
tum information is transferred with perfect fidelity. PST has been extensively
investigated using the techniques of spectral graph theory. The paths on 2 and
3 vertices are known to exhibit PST, and there is a long–standing open ques-
tion as to whether there are any other trees that do so. In this talk we report
on some progress on that question, showing that PST is impossible for trees of
diameter 4, as well as for mirror–symmetric trees on an even number of vertices.
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Extremal Singular Graphs and Nut
Graphs

Irene Sciriha1
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Abstract
The rank of the 0–1–adjacency matrix A of a graph is the dimension of the

orthogonal complement of the nullspace of A. A graph G is singular of nullity
η if the nullspace of A has dimension η ≥ 1. Such a graph contains η cores
determined by the non–zero entries of the vectors in a basis for the nullspace
of A. These cores are induced subgraphs of singular configurations, the latter
occurring as induced subgraphs of G. A minimal basis for the nullspace of A,
corresponding to a fundamental system F of cores, has the minimum sum of
the vector weights which are strictly bounded above by the core–width τ . We
explore how η and τ control the order of the singular configurations. A graph is
extremal singular if η + τ reaches the maximum possible. We show that among
graphs of nullity one, extremal graphs are nut graphs, that is the nullspace of
A is generated by a vector with no zero entries.

Acknowledgements: Work supported by UM for project GCGN2023 (Spectra
of Nanostructures)

References

[1] I. Sciriha, A. Farrugia, From Nut Graphs to Molecular Structure and Con-
ductivity, University of Kragujevac, Serbia, 2021.

[2] I. Sciriha, M. Debono, M. Borg, P.W. Fowler, and B. T. Pickup. Interlacing-
extremal graphs. Ars Math. Contemp., 6—(2):261–278, 2013.

[3] I. Sciriha. Maximal and extremal singular graphs II, Journal of Mathematical
Sciences-Springer (JMS), 182-2:117–125, 2012.

[4] I. Sciriha. Maximal and extremal singular graphs I, Sovremennaya Matem-
atika i Ee Prilozheniya-Contemporary Mathematics and its Applications,
71:1–9, 2011.

[5] I. Sciriha. Extremal non-bonding orbitals. MATCH Commun. Math. Com-
put. Chem. http://www.pmf.kg.ac.rs/match/, 63(3):751–768, 2010.

[6] I. Sciriha. Maximal core size in singular graphs. Ars Math. Contemp.,
2(2):217–229, 2009

[7] I. Sciriha and I. Gutman. Nut graphs: maximally extending cores. Util.
Math., 54:257–272, 1998.



25th Conference of the International Linear Algebra Society (ILAS 2023)

398	 Madrid, Spain, 12-16 June 2023
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Abstract

A celebrated result of Karpelevič [1] describes Θn, the collection of all eigen-
values arising from the stochastic matrices of order n. The boundary of Θn

consists of roots of certain one-parameter families of polynomials. Johnson and
Paparella [2] construct, for each λ on the boundary of the Θn, a stochastic ma-
trix of order n having λ as an eigenvalue. In this talk we present the results
from [3] where all possible stochastic realizations of an eigenvalue on the border
of Θn are considered.

Acknowledgements: This work was supported by University College Dublin:
Grant SF1588 and NSERC Discovery: Grant RGPIN-2019-05408.
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[1] F. Karpelevič. On the characteristic roots of matrices with nonnegative
elements. in Eleven Papers Translated from the Russian, Amer. Math. Soc.
Transl. (2), 140:79-100, (1988).

[2] C. Johnson and P. Paparella. A matricial view of the Karpelevič theorem.
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Limit points of Laplacian spectral radii
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Abstract

In 1972 A. J. Hoffman [1] proposed to determine which numbers are limit
points of spectral radii of matrices. Let A be the set of all symmetric matrices
of all orders, every entry of which is a non-negative integer and R = {ρ : ρ =
ρ(A) for some A ∈ A} where ρ(A) is the largest eigenvalue of A. He showed
that it is sufficient to consider matrices of A having only entries in {0, 1} and
0 diagonal, e.g. adjacency matrices of graphs. Additionally, he determined all

limit points of R ≤
√

2 +
√
5. More precisely, let τ = 1+

√
5

2 (the golden mean).

For n = 1, 2, . . ., let βn be the positive root of

Qn(x) = xn+1 −
(
1 + x+ x2 + · · ·+ xn−1

)
.

Let ᾱn = β̄
1/2
n + β̄

−1/2
n · Then 2 = ᾱ1 < ᾱ2 < · · · are all the limit points of R

smaller than lim
n→∞

ᾱn = τ1/2 + τ−1/2 =

√
2 +

√
5 (= 2.05+).

Then, in 1989, J. B. Shearer [2] extended this result. He showed that every

real number larger than
√
2 +

√
5 is a limit point of R.

Both Hoffman and Shearer found sequences of trees whose spectral radii
were limit points. It seems remarkable that the set composed only by the largest

eigenvalue of the adjacency matrix of trees is dense in the interval [
√

2 +
√
5,∞).

In this talk, we are interested in a problem originated by Hoffman’s ques-
tion. More specifically, we want to study the Laplacian version of Hoffman and
Shearer’s results, that is, what real numbers are limit points of the spectral
radii of Laplacian matrices of graphs. The converse of this problem may also
be viewed as which sequence of graphs have limit points.

We recall the work of Guo [3], which may be seen as the analogous of Hoff-

man’s. Let ω = 1
3 (

3
√
19 + 3

√
33 +

3
√

19− 3
√
33 + 1), β0 = 1 and βn, n ≥ 1 be

the largest positive root of

Pn(x) = xn+1 −
(
1 + x+ · · ·+ xn−1

)
(
√
x+ 1)2.

Let αn = 2+β
1
2
n +β

− 1
2

n . Then 4 = α0 < α1 < α2 < · · · are all of the limit points
of Laplacian spectral radii of graphs smaller than limn→∞ αn = 2+ω+ω−1 (=
4.38+).
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By analogy to the adjacency case, it is natural to ask whether any real
number µ ≥ 2 + w + w−1 = 4.38+ is the limit point of the Laplacian spectral
radii of graphs. We refer to Figure 1 for an illustration of the current state of
knowledge.

Figure 1: Conjecture about Laplacian limit points

In this talk we explain the development of some analytical tools allowing one
to study the density of Laplacian spectral radius in [4.38+,∞). We first adapt
Shearer’s method to the Laplacian case, verifying that it is not sufficient to prove
density. In spite of the fact that the method produces sequence of caterpillars
having a limit point, we show that this limit point is not the desired number. As
a consequence, we find a whole interval where the method produces no Laplacian
limit points. We then extend Shearer’s method to the class of linear trees, e.g.
we define sequences of linear trees whose Laplacian spectral radius has limit
points. This provides a generalization of Shearer’s process, since caterpillars is
a subclass of linear trees. Our generalization improves Shearer’s process in the
sense that we are able to find a larger set of limit points.
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Rank one perturbations for cone
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Abstract

A choice of feedback control in a linear control system is proposed in order to
achieve that a trajectory eventually enters the nonnegative orthant and remains
therein for all time thereafter. This is achieved by imposing the strong Perron-
Frobenius property and involves altering the eigenvalues, as well as the left
eigenvectors via rank one perturbations.
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Fractional revival on graphs
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E-mail: xiaohong.zhang@umontreal.ca

Abstract

Let M be the adjacency matrix or Laplacian matrix of a graph X. The
transition matrix of the continuous time quantum walk at time t is U(t) = eitM .
Let u, v be vertices of X. If there is a time t such that U(t)eu = αeu + βev,
then we say that X admits fractional revival at time t. In this talk, we present
some recent developments on fractional revival on graphs.
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Abstract Let M : Ω −→ Cn×n be meromorphic and regular, where Ω ⊂ C
is a bounded domain. Then λ ∈ Ω is said to be a zero of M(s) if there exists a
holomorphic function v : Ω −→ C such that v(λ) �= 0 and lims→λ M(s)v(s) = 0.
Consider the spectrum of M given by

σ(M) := {λ ∈ Ω : λ is a zero of M(s)}.

When M(s) is a rational matrix (entries are rational functions), it is possible
to construct a regular matrix pencil A − sB , called a linearization of M(s),
such that M(s) and A−sB are “equivalent” and hence σ(M) = σ(A,B), where
σ(A,B) is the spectrum of A− sB. We extend the concept of linearization of a
rational matrix to the case of a meromorphic matrix-valued function. We show
that it is possible to construct a regular operator pencil A− sB, which we refer
to as a linearization of M(s), such that M(s) and A− sB are “equivalent” and
that σ(M) = σ(A,B)∩Ω. Thus, the eigenvalue problem M(λ)v = 0 is subsumed
by the generalized eigenvalue problem (A− λB)u = 0.

Acknowledgements: Work of the second author supported by the Govt. of
India in the form of an Institute Fellowship.
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Abstract

The eigendecompositions of holomorphic para-Hermitian matrices, matrix-
valued functions that are Hermitian on the unit circle, is a fundamental key in
signal processing and decorrelation methods. In this presentation, the existence
of an eigendecomposition through paraunitary base change is discussed, showing
that in general there does not exist a holomorphic decomposition, but it can be
performed in the field of Puiseux series. This generalizes the celebrated theorem
of Rellich for matrix-valued functions that are analytic and Hermitian on the
real line. In fact, a version of Rellich’s theorem can be stated for matrix-valued
function that are analytic and Hermitian on any line or any circle on the complex
plane. Moreover, these results can be extended to para-Hermitian matrices
whose entries are Puiseux series, and in particular can be used to examine the
singular value decomposition of rectangular matrices whose entries are Puiseux
series. Finally, the same results allow an analysis of the stability for the finite
eigenvalues of *-palindromic matrix polynomials through their associated sign
characteristics and features.
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Abstract

We present an algorithm for the solution of Sylvester equations with right-
hand side of low rank, based on projection onto a block rational Krylov subspace.
Extending the convergence analysis in [2] to the block case, we link the conver-
gence with the problem of minimizing the norm of a small rational matrix over
the spectra or field-of-values of the involved matrices. This is in contrast with
the non-block case, where the minimum problem is scalar, instead of matrix-
valued. Replacing the norm of the objective function with an easier to evaluate
function yields several adaptive pole selection strategies, providing a theoretical
analysis for known heuristics, as well as effective novel techniques.
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Abstract

Given a set of matrices Ai ∈ Cn×n, we consider a regular matrix polynomial
P (λ) =

∑d
i=0 λ

iAi of degree d. An interesting problem consists in the computa-

tion of the nearest singular polynomial in the form P̃ (λ) =
∑d

i=0 λ
i (Ai +∆Ai).

For instance, this can be important when det (P (λ)) represents the characteris-
tic equation of a system of differential-algebraic equations, to robustly guarantee
its well-posedness. We extend the idea presented in [2], which consists of impos-
ing that the determinant vanishes on a prescribed set of complex points {µj}mj=1,

with m larger than the degree of det (P (λ)). This is obtained by a two-level
procedure, in which for a fixed perturbation size ε = ∥ [∆A0, . . . ,∆Ad] ∥F we
minimize

Fε (∆A0, . . . ,∆Ad) =
1

2

m∑
j=1

σ2
min

(
P̃ (µj)

)
,

where σmin denotes the smallest singular value, and then we find the smallest
value ε such that the functional Fε vanishes.

Whenever the singularity of the polynomial is determined by the property
that the perturbed matrices Ai+∆Ai have a common (left/right) kernel, we can
show that the perturbations have a low rank property, which can be exploited
by the algorithm.

An additional constraint that can be addressed by the method in a natural
way is to include given structures to perturbation matrices, like a certain sparsity
pattern determined by the original matrices or structures involving the whole
matrix polynomial, like palindromic properties.

Acknowledgements: Work (partially) supported by Italian MUR within the
PRIN-2017 Project ”Discontinuous dynamical systems: theory, numerics and
applications” and by the INdAM Research group GNCS
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Abstract

Rational approximation is a powerful tool to obtain accurate surrogates for
nonlinear functions that are easy to evaluate and linearize. The interpolatory
adaptive Antoulas–Anderson (AAA) method is one approach to construct such
approximants numerically. For large-scale vector- and matrix-valued functions,
however, the direct application of the set-valued variant of AAA becomes inef-
ficient. We propose and analyze a new sketching approach for such functions
called sketchAAA that, with high probability, leads to much better approx-
imants than previously suggested approaches while retaining efficiency. The
sketching approach works in a black-box fashion where only evaluations of the
nonlinear function at sampling points are needed. Numerical tests with nonlin-
ear eigenvalue problems illustrate the efficacy of our approach, with speedups
above 200 for sampling large-scale black-box functions without sacrificing on
accuracy.
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Abstract

The underlying motivation for this work is the search for transparent so-
lutions of inverse problems for matrix polynomials. More specifically, given a
collection of structural data and a choice of degree (or grade), we aim to con-
struct a matrix polynomial of the given degree (grade) with exactly the given
structural data, from which that data can be recovered in a purely combinatorial
fashion, without any numerical computation.

In the strictly regular case, where the structural data consists solely of finite
elementary divisors, this has been achieved in a way that can reasonably be
called a canonical form (see the contributed talk by R. Hollister). But for the
general regular case, the possible presence of infinite elementary divisors must
now also be considered. This talk focuses on that aspect of the inverse prob-
lem, i.e., how to incorporate infinite elementary divisors in a controlled fashion,
without spoiling the desired finite elementary divisor structure. Our strategy
for achieving this exploits the notion of “spectral localization”, a property pos-
sessed by all of the matrix polynomials in our transparent solution of the strictly
regular inverse problem. Describing the spectral localization property, and how
it can be used in the transparent solution of the regular inverse problem, is then
the main goal of this talk.
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Abstract

Filters connecting two polynomial matrices D1(s), D2(s) are polynomial ma-
trices F1(s), F2(s) that satisfy the equation F2(s)D1(s) = D2(s)F1(s). Filters
that connect square quadratic matrix polynomials with nonsingular leading co-
efficients and the same finite elementary divisors were called coprime filters in
[2]. The notion of coprime filters has been extended for matrix polynomials
of possibly different sizes, ranks or degrees that share the same spectral struc-
ture, i.e., the same finite and infinite elementary divisors. Such filters have
been named spectral filters in [1] and they completely characterize when two
polynomial matrices are spectrally equivalent, that is, when they have the same
spectral structure. Spectrally equivalent nonsingular polynomial matrices have
the same degree. Given two spectrally equivalent nonsingular polynomial ma-
trices of degree d we first parametrize the set of their spectral filters of degree
d− 1, and then show how to obtain the spectral filters of any other degree. The
parameter space is the subset of invertible matrices of the centralizer of any
linearization of the reversals with respect to a scalar that is not an eigenvalue
of the given matrices.
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Abstract

Polynomial and rational eigenvalue problems are spectrally equivalent to
linear eigenvalue problems, called linearizations. The prototype example is the
companion matrix pencil for the polynomial eigenvalue problem. Other nonlin-
ear eigenvalue problems are approximated by a polynomial or rational eigenvalue
problem. In [9], a Padé approximation is suggested. Potential theory was used
in NLEIGS [3]. A rational approximation based on contour integration is pro-
posed by [8] and uses a basis of rational monomials. In this work, we use the
AAA method for rational approximation [7] and the AAA-least squares vari-
ant [1]. The set-valued AAA method and variants are efficient approaches for
approximating all entries of the matrix and obtaining a small size linearization
[4][6][5][2].

In this talk, we present results related to the linearization of nonlinear eigen-
value problems. Classical vibro-acoustic analysis relies on a description of the
model in the frequency domain. Passive damping and absorptive materials, such
as visco-elastic, porous and poro-elastic materials exhibit viscous and thermal
damping mechanisms, which result in complex, frequency-dependent behaviour.
Many different descriptions to account for their complex behaviour can be found
in the literature. Time domain analysis of such systems has gained quite some
attention in the context of auralisation, virtual sensing and inverse characteri-
zation. Starting from the corresponding time-domain description of these ma-
terials is not always so straightforward as convolutions are required to account
for the constitutive relationships. One solution is to make use of a linearization
of the frequency dependent system matrix.

In its most general form, the frequency dependent model can be expressed
as

A(ω)x̂ = b̂(ω), (1)

where x is the state vector and ω is the angular frequency. In classical vibration
analysis, the system matrix is quadratic in ω. In this talk, we consider A(ω)
that is not polynomial or rational in ω. In fact, we assume that the system in
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the frequency domain can be written as the holomorphic decomposition or split
form

(A0 + ıωA1 − ω2A2 +A−1g1(ω) + · · ·+A−mgm(ω))x̂ = b̂(ω) (2)

where gi is a scalar function, and the number of nonlinear terms, m, is not large,
i.e., a few dozen at most.

For the simulation in the time domain of (1), we aim to find a linear model

−E
dx

dt
+Ax = b(t) , t ≥ 0, (3)

x(0) = x0,

such that x̂ is related to the Laplace transform of x. First, we will derive a
linear model in the frequency domain that approximates (1). The link with the
time domain is then straightforward. In order to form a linear model, we will
use ideas from the solution of nonlinear eigenvalue problems. For the relation
with the time domain, we introduce the Laplace variable s = iω and represent
A as a function of s. When A is a matrix polynomial or a rational matrix, i.e.,
the entries of A are polynomials or rational functions, there always are E and
A, b and c so that

−ıωEx̂+Ax̂ = b̂ (4)

for ω ∈ R, and a way to extract x̂ from x̂. Eq. (4) is called a linearization of
(1).

The linearization should satisfy the following properties:

• having real matrices E and A,

• having eigenvalues with negative real parts only (stable system).

The standard AAA approximations do not satisfy these properties. Obtaining
real matrices is straightforward by exploiting that g1, . . . , gm are ‘real’ functions,
i.e., gi(z) = gi(z) for i = 1, . . . ,m. Obtaining stable systems is less obvious.
The eigenvalues of the nonlinear eigenvalue problem det(A(λ)) = 0 are sta-
ble, otherwise the physical problem is not stable. However, it appears that a
bad choice of the approximation region for AAA can lead to unstable spurious
eigenvalue estimates. The main difficulty is that the linearization from [6] is
not strong, in that it has an eigenvalue at infinity and the poles of the rational
approximation can be eigenvalues too. We therefore propose a new linearization
that does not have the eigenvalue at infinity. The poles of the rational function
are more difficult to eliminate from the spectrum. For most cases that we have
tried, we found that the poles lie in the left half plane, i.e., the functions can be
well approximated by the transfer function of a stable linear system. However,
it does happen that poles are unstable. We show how we can deal with unstable
poles by playing with the AAA approximation and AAA least squares.
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Abstract

The problem of finding the nearest singular pencil to a given regular, complex
or real, n × n matrix pencil A + λB is a long-standing problem in Numerical
Linear Algebra that was originally posed in [1]. This problem turned out to
be very difficult and, so far, just a few numerical algorithms are available in
the literature for its solution [2, 3], though they may be very expensive from a
computational point of view. For instance, the one in [3] has a cost of O(n12)
flops per iteration. In this talk, we introduce two new algorithms for solving this
problem based on Riemannian optimization. The first one looks for the closest
complex singular pencil via the minimization of an objective function over the
cartesian product of the unitary group by itself. The second one considers a
regular real pencil and looks for the nearest singular real pencil to it via the
minimization of a different objective function over the cartesian product of the
special orthogonal group by itself. Moreover, we present a collection of numerical
experiments that show that the new algorithms can deal effectively with pencils
of larger sizes than those considered by previous algorithms and find minimizers
of, at least, the same quality than previous algorithms.
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Abstract

The talk considers polynomial eigenvalue problems that involve matrix poly-
nomials expressed in various bases. The standard approach to solving these
problems is to embed the matrix polynomial coefficients in a larger matrix pen-
cil, denoted as A − λB, through a process called linearization. When only a
few eigenvalues of the matrix polynomial are needed, the rational Krylov pro-
cedure applied to A − λB is the preferred method for solving the linearized
problem. To reduce computational and storage costs, memory-efficient versions
of the Arnoldi method have recently been proposed. This work aims to ana-
lyze the numerical stability of the compact Arnoldi method for a broad range
of linearizations, including the well-known Frobenious companion form and the
colleague and comrade linearizations.
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Abstract

One classical approach to solving an eigenvalue problem associated with
a matrix polynomial P (λ) is to solve an eigenvalue problem associated with a
matrix pencil L(λ) that is spectrally equivalent to P (λ); such an L(λ) is called a
linearization of P (λ). During the last two decades much research has been done
on developing various ways of constructing linearizations, e.g., ansatz spaces [3],
Fiedler pencils [1] and their variations, block minimal basis pencils [2], etc.

We start by revisiting the notion of ansatz spaces of matrix pencils [3] as-
sociated with an n × n matrix polynomial P (λ), regular or singular, and dis-
cuss generalizations of this notion that are more in alignment with polynomials
P (λ) that are expressed in non-monomial bases. We then explore some non-
obvious isomorphic relationships between the various generalized ansatz spaces,
and show how these isomorphisms can be exploited to easily produce lineariza-
tions of matrix polynomials expressed in many of the classical (non-monomial)
polynomial bases, all in a single unified framework. One of the distinctive fea-
tures in our development is a systematic use of non-standard representations
of ansatz pencils in the form XU(λ) + Y D(λ), where X, Y are constant ma-
trices associated with pencils in a ”classical” ansatz space L1(P ) [3] and U(λ),
D(λ) are matrix pencils whose structures are chosen to be better adapted to the
polynomial basis that P (λ) is expressed in. We conclude with several concrete
examples of U(λ) and D(λ) associated with P (λ) expressed in non-monomial
bases such as Newton, Bernstein, Lagrange, and Chebyshev, and observe that
here U(λ) and D(λ) are often diagonal or have a low bandwidth.
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Rectangular multiparameter eigenvalue
problems

Michiel E. Hochstenbach1, Tomaž Košir2, Bor Plestenjak2
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Abstract

The multiparameter eigenvalue problem (MEP) has the form

Wi(λ)xi := (Vi0 + λ1Vi1 + · · ·+ λkVik)xi = 0, i = 1, . . . , k, (1)

where Vij ∈ Cni×ni , λ = (λ1, . . . , λk) ∈ Ck, and xi ∈ Cni is nonzero. In
the generic case, (1) has n1 · · ·nk eigenvalues that are roots of the polynomial
system det(Wi(λ)) = 0 for i = 1, . . . , k. A generalization of (1) are polynomial
MEPs, where W1, . . . ,Wk are multivariate matrix polynomials. For instance, a
quadratic two-parameter eigenvalue problem has the form

(Vi00 + λVi10 + µVi01 + λ2Vi20 + λµVi11 + µ2Vi02)xi = 0, i = 1, 2, (2)

where Vipq ∈ Cni×ni . A generic problem (2) has 4n1n2 eigenvalues (λ, µ).
Recently, a new type of eigenvalue problems with k ≥ 2 parameters has

appeared with applications in ARMA and LTI models [1, 2]. A general form is

M(λ)x :=
(∑

ω

λωAω

)
x = 0, (3)

where ω = (ω1, . . . , ωk) is a multi-index, λω = λω1
1 · · ·λωk

k , and x ∈ Cn is
nonzero. The key properties of (3) are that there is just one equation and
Aω = Aω1,...,ωk

∈ C(n+k−1)×n are rectangular matrices. To distinguish it from
(1) and (2), we call (3) a rectangular MEP. We will show how we can efficiently
numerically solve (3) using methods for (1).
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Abstract

One of the most commonly used method to solve polynomial equations
p(x) = 0 relies on considering the companion matrix of the polynomial p(x),
whose eigenvalues coincides with the roots of p(x). The roots of a rational func-
tion r(x) are the roots of its numerator when r(x) is written as an irreducible
fraction p(x)/q(x). Then, the first idea to solve rational equations r(x) = 0 could
be simply to consider the companion matrix of the numerator p(x). However,
not always rational functions are given as the ratio of two coprime polynomials
and, in addition, the computation of p(x) may be a source of numerical insta-
bilities. In this work we transform rational equations r(x) = 0 into eigenvalue
problems without explicitly computing the numerator p(x). For that, rational
functions will be given by considering different representations. Finally, we will
see how these ideas can be extended to compute zeros of rational matrices, i.e.,
matrices whose entries are rational functions.
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Abstract

A computed approximate eigenpair (λ̂, x̂) of a matrix-valued function F (λ)
that is analytic on a nonempty open set Ω ⊆ C is usually considered acceptable
if the normalized residual F (λ̂)x̂ is small since it indicates that the computed so-
lution has a small backward error. When F (λ) satisfies a one-sided factorization
of the form

H(λ)F (λ) = L(λ)G(λ) (1)

with L(λ) a linear pencil, andG(λ),H(λ) of full column rank for each λ ∈ Ω then

the error in the eigenvalue λ̂ can be bounded as the error of λ̂ as an eigenvalue
of L(λ). We can then invoke well-established eigenvalue perturbation results
for linear problems. For approximate eigenvectors, however, no previous result
exists that rigorously bound the error in the computed eigenvector x̂.

In this talk we present a posteriori upper bounds for the angle between x̂ and
an exact eigenvector x of F (λ) when the latter satisfies a one-sided factorization
of the form (1). We also present first-order error bounds that do not require
a one-sided factorization of F (λ). One implication of our result is that an
eigenvector can be computed accurately even when it corresponds to several
distinct eigenvalues.
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Abstract We define a compact local Smith-McMillan form of a rational
matrix R(λ) as the diagonal matrix whose diagonal elements are the nonzero
entries of a local Smith-McMillan form of R(λ). We show that a recursive rank

search procedure, applied to a block-Toeplitz matrix built on the Laurent
expansion of R(λ) around an arbitrary complex point λ0, allows us to compute

a compact local Smith-McMillan form of that rational matrix R(λ) at the
point λ0, provided we keep track of the transformation matrices used in the
rank search. It also allows us to recover the root polynomials of a polynomial

matrix and root vectors of a rational matrix, at an expansion point λ0.
Numerical tests illustrate the promising performance of the resulting

algorithm.
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Abstract

An n × n matrix polynomial P (λ) = Pℓλ
ℓ + Pℓ−1λ

ℓ−1 + . . . + P1λ + P0

will be said to be diagonalizable if it is (unimodularly) equivalent to a diagonal
matrix D(λ) = Dℓλ

ℓ +Dℓ−1λ
ℓ−1 + . . . +D1λ +D0 with Dj diagonal for each

j = 0, 1, . . . , ℓ and Dℓ ̸= 0. When P (λ) is diagonalizable, it is also said that it
can be decoupled by equivalence transformations. This terminology originated
in the study of quadratic systems; that is to say, matrix polynomials of degree
ℓ = 2, where the problem of finding physically implementable transformations
allowing any given quadratic matrix polynomial to be decoupled has a long
tradition.

Every matrix polynomial P (λ) is equivalent to a diagonal matrix (its Smith
normal form) but, in general, this normal form does not have the property of
having the same degree as P (λ). The first step in the diagonalization of a
matrix polynomial P (λ) is the characterization of the elementary divisors that
are admissible for decoupling (see [2]). Such a characterization was given in [3]
for real and complex matrices, ℓ = 2, and detP2 ̸= 0.The results in [3] were
extended in [6] to quadratic matrix polynomials with non-zero but singular
leading coefficient. The case ℓ = 3 was handled in [4], where implicit necessary
and sufficient conditions were given for a matrix polynomial of degree ℓ = 3 to be
diagonalizable. In this presentation, explicit necessary and sufficient conditions
will be exhibited for ℓ = 3 and ℓ = 4, and a methodology for dealing with higher
degree matrix polynomials will be proposed. The highly combinatorial nature
of the problem was made clear in [5], where the problem was connected with
the existence of a supply-demand flow on a capacity-constrained, supply-demand
network and to the existence of nonnegative integral matrices with prescribed
row and column sums. (see [1, Ch. 6] for a detailed account of this type of
problem).
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Abstract

Support for floating point arithmetic in multiple precisions is becoming in-
creasingly common in emerging architectures. Mixed precision capabilities are
already included in a quarter of the machines on the TOP500 list and are ex-
pected to be a crucial hardware feature in exascale machines. In this talk, we
consider the Nyström method for approximating a positive semidefinite matrix.
The computational cost of its single-pass version can be decreased by running it
in mixed precision, where the expensive matrix products are computed in a lower
precision. Our finite precision analysis supports intuition: the lower the rank
of the approximation desired, the lower the precision that can be used without
significant detriment. We further develop a heuristic for determining a suitable
precision and discuss the use of such approximations within preconditioners for
Krylov subspace methods.
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Abstract

Traditional rounding error analysis in numerical linear algebra provides worst-
case bounds that tend to be very pessimistic. We describe results that make
assumptions about the statistical distribution of the rounding errors and pro-
vide sharper bounds that hold with certain probabilities. These results apply
to both inner product-based algorithms and orthogonal factorization-based al-
gorithms. The statistical assumptions that we make are satisfied by a form of
rounding called stochastic rounding and we explain why there is much current
interest in stochastic rounding in machine learning and other areas.
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Abstract

In this talk I will presents a new class of algorithms to compute solutions of
large-scale linear discrete ill-posed problems that can be modeled as the sum of
two independent random variables. Following a Bayesian modelling approach,
this corresponds to adding a different regularization term for each component
in the original least-squares minimization scheme (assuming Gaussian noise).
In particular, following smoothness and sparsity priors, this involves adding
a covariance-weighted quadratic term and a sparsity enforcing �1 term (with
additional smoothing to ensure differentiability at the origin) applied to the dif-
ferent parts of the solution. The approach proposed in this paper consists in
constructing a sequence of approximated quadratic problems that are partially
solved using augmented flexible Krylov–Tikhonov methods. Compared to other
traditional methods, the new algorithms have the advantage of building a single
(augmented, flexible) approximation (Krylov) subspace that encodes regular-
ization through variable ‘preconditioning’ and that is expanded as soon as a
new problem in the sequence is defined. This also allows for the regularization
parameters to be chosen on-the-fly at each iteration. The performance of these
algorithms is shown through a variety of numerical experiments.
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Abstract

Gaussian processes (GPs) are a crucial tool in machine learning and their
use across different areas of science and engineering has increased given their
ability to quantify the uncertainty in the model. The covariance matrices of
GPs arise from kernel functions, which are crucial in many learning tasks and
the matrices are typically dense and large-scale. Depending on their dimension
even computing all their entries is challenging and the cost of matrix-vector
products scales quadratically with the dimension, if no customized methods are
applied. We present a matrix-free approach that exploits the computational
power of the non-equispaced fast Fourier transform (NFFT) and is of linear
complexity for fixed accuracy. With this, we cannot only speed up matrix-vector
multiplications with the covariance matrix but also take care of the derivatives
needed for the gradient method avoiding Hadamard products of the Euclidean
distance matrix and the kernel matrix. This arises when differentiating kernels
as the squared-exponential kernel with respect to the length-scale parameter
in the denominator of the exponential expression. Our method introduces a
derivative kernel which is then well suited for multiplying with the Hadamard
product. Since NFFT’s efficiency is limited to feature dimensions smaller than
4, we decompose the features into and learn on multiple kernels, allowing our
method to be used on high-dimensional data. By applying our preconditioned
NFFT-based fast summation technique, fitting the kernel and the derivative
kernel will allow for fast tuning of the hyperparameters.
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Abstract

The location of the roots of a quadratic scalar polynomial may be identified
from its coefficients. This paper shows that when the coefficients of the poly-
nomial are square matrices, then appropriate generalizations of some of these
statements hold for the eigenvalues of the resulting quadratic matrix polyno-
mial. The locations of the eigenvalues are described with respect to the imagi-
nary axis, the unit circle or the real line. The results lead to upper bounds on
some important distances associated with quadratic matrix polynomials. The
principal tool used is an eigenvalue localization technique using block Geršgorin
sets applied to certain linearizations of these polynomials.
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Abstract

Given an n by n matrix A and an n-vector b, along with a rational func-
tion R(z) := D(z)−1N(z), we show how to find the optimal approximation to
R(A)b from the Krylov space, span(b, Ab, . . . , Ak−1b), using the basis vectors
produced by the Arnoldi algorithm. Here optimal is taken to mean optimal
in the D(A)∗D(A)-norm. Similar to the case for linear systems, we show that
eigenvalues alone cannot provide information about the convergence behavior of
this algorithm and we discuss other possible error bounds for highly nonnormal
matrices.

Acknowledgements: Work (partially) supported by NSF Grant No. DGE-
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Abstract

Modeling gas flow through pipelines, and even more so whole pipeline networks
as well as gas networks also including control elements requires to go through
several steps. The resulting spatially discretized system is a so-called Differential
Algebraic Equation (DAE) of large dimension. This DAE is typically nonlin-
ear, however admits a special structure, which allows for structure preserving
reduced order modelling techniques. We will present the structure and how to
preserve it and discuss the concept of tractability index for DAEs, which is also
preserved in the reduced model. We furthermore investigate the eigenvalues of
the corresponding ordinary differential equations for the reduced as well as the
full order model.
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Abstract

Stability and robustness analysis of linear continuous and discrete dynamical
systems is a vast and active interdisciplinary research area. The word stability
in this talk is meant to indicate the broad spectrum of issues that arise in the
analytical and numerical study of dynamical and control systems, resulting from
the need to have stable and reliable representations robustly preserving essential
qualitative properties of the underlying physical model. The analysis of these
features is often based on eigenvalue optimization of a certain structured matrix
A (e.g., sparse, Hamiltonian, nonnegative, Toeplitz, etc.). The main goal of
this talk is to show how robustness of spectral properties can be computed. We
propose a 2-level iterative algorithm. In an inner iteration, a quasi gradient flow
in the manifold of rank-1 matrices drives perturbations to the original matrix
of a fixed size into a minimum of a functional that depends on eigenvalues (and
possibly eigenvectors). In an outer iteration, the perturbation size is optimized
such that the functional reaches some target value [1]. A key point is related
to certain rank-related properties of extremizers, which were first used in the
pioneering work by Guglielmi and Overton [2] and subsequently developed to
exploit gradient flows on low-rank manifolds (see [3]).

Acknowledgements: Work (partially) supported by the Italian MUR (Mini-
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dynamical systems: theory, numerics and applications” (2018–2023) .

References

[1] N. Guglielmi, C. Lubich and S. Sicilia. Rank-1 matrix differential equations
for structured eigenvalue optimization. SIAM J. Numer. Anal. Appl, sub-
mitted (2023).

[2] N. Guglielmi and M. Overton. Fast algorithms for the approximation of
the pseudospectral abscissa and pseudospectral radius of a matrix. SIAM J.
Matrix Anal. Appl., 32: 1166–1192 (2011)

[3] N. Guglielmi and C. Lubich. Matrix nearness problems and eigenvalue opti-
mization. Monograph in preparation, 2023.



25th Conference of the International Linear Algebra Society (ILAS 2023)

Madrid, Spain, 12-16 June 2023	 443

Large-Scale Minimization of the
Pseudospectral Abscissa

Nicat Aliyev1, Emre Mengi2

1 Czech Technical University, Department of Instrumentation and Control,
Technicka 4, 16607, Prague, Czech Republic

E-mail: nijat.aliyev@cvut.cz
2 Koç University, Department of Mathematics,

Rumeli Feneri Yolu 34450, Sarıyer, Istanbul, Turkey
E-mail: emengi@ku.edu.tr

Abstract

The minimization of the spectral abscissa of a matrix dependent on pa-
rameters has drawn interest in the last couple of decades [1]. The problem
is motivated especially by the stability considerations for the associated linear
control system.

The major difficulty in the minimization of the spectral abscissa is that its
dependence on the parameters is non-Lipschitz. Especially, if the rightmost
eigenvalue whose real part is the spectral abscissa is not simple, the spectral
abscissa can change rapidly under small perturbations. A remedy to this is, for
a prescribed ε > 0, minimizing the ε-pseudospectral abscissa [2], the real part
of the rightmost point in the set consisting of eigenvalues of all matrices at a
distance of ε, formally defined for a square matrix A by

αε(A) := max {Re(z) | z ∈ Λε(A)} , where

Λε(A) :=
{
z ∈ C | z ∈ Λ(A+∆) ∃∆ ∈ Cn×n s.t. ‖∆‖2 ≤ ε

}
.

Unlike the spectral abscissa, the pseudospectral abscissa αε(A) is a locally Lips-
chitz continuous function of the entries of the matrix A [3]. Moreover, minimiz-
ing αε(A) for a matrix A dependent on parameters affects stability of not only A
but also all nearby matrices, which is significant in the presence of uncertainties.

We present a subspace framework to minimize the ε-pseudospectral abscissa
of a large matrix dependent on parameters analytically. At every subspace it-
eration, a one-sided subspace restriction on the parameter-dependent matrix
yields a small rectangular pseudospectral abscissa minimization problem. We
expand the restriction subspace based on the minimizer of this small problem.
We prove in theory for the proposed subspace framework that, assuming the
global minimizers of the small problems are retrieved, convergence to the global
minimizer of the original large-scale pseudospectral abscissa minimization prob-
lem occurs in the infinite dimensional setting, and that the rate-of-convergence
is superlinear when there is only one parameter [4]. Our theoretical findings are
illustrated on real large-scale examples that concern the stabilization by static
output feedback of benchmark linear control systems from [5].
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Abstract

Given a state-space representation M = {A,B,C,D} of a continuous-time
linear dynamical system, the system is strictly passive if the eigenvalues of A
are in the open left half-plane and the Hermitian part of its transfer function is
positive definite on the imaginary axis. The passivity radius tells us the smallest
perturbation that can be made to matrices inM such that strict passivity will be
lost. In this talk, we discuss how to compute a closely related quantity, namely,
the extremal scalar value Ξ for which a certain parametric system with one real
parameter loses strict passivity. This particular quantity is important because
the value of the passivity radius of a general system depends upon the value of Ξ,
and it allows one to construct certificates for the passivity of parametric passive
systems. As it turns out, computing Ξ involves solving a potentially nonsmooth
eigenvalue optimization problem in two real variables. Inspired by the efficient
level-set techniques for computing the H∞ norm [1, 2], Mehrmann and Van
Dooren recently proposed the first algorithm to compute the continuous-time
version of Ξ in [3] and shortly thereafter addressed computing its discrete-time
version in [4], although they did not analyze the efficiency of their methods. By
showing that the value of Ξ can be recast as what we call a root-max problem
and then generalizing the Hybrid Expansion-Contraction (HEC) algorithm [5]
from its original purpose of approximating the H∞ norm of large-scale systems
to root-max problems, we have devised new methods that compute successively
better locally optimal approximations to Ξ with a local quadratic rate of conver-
gence. Our analysis also demonstrates that the earlier methods of Mehrmann
and Van Dooren have at least a superlinear local rate of convergence. However,
in practice, we also demonstrate that the performance gap between their meth-
ods and our faster new HEC-based approach can be significantly larger than
what our convergence rate results suggest.
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On the Loewner framework for model
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Abstract

The Loewner framework has proven to be arguably one of the most success-
ful data-driven model order reduction techniques in recent decades. It was
originally proposed in [1] as a solution for the generalized realization problem,
including also the tangential interpolation case. In the last 16 years, it was
successfully extended, developed and applied to various data-driven model or-
der reduction scenarios, using frequency-domain data, such as samples of the
frequency response. The first step in the Loewner framework consists in putting
together data matrices, i.e., the Loewner and shifted Loewner matrices based
on a chosen partition into right and left data. The latter step is of particular im-
portance, since it greatly influences the quality of the fitted models. Then, the
singular value decomposition (SVD) is employed to a linear combination of the
Loewner matrices; by forming the projection bases using the dominant singular
values and vectors, a compressed model is computed. We present new insights
into the Loewner framework for the case of discretized linear systems, its appli-
cation to approximation of some irrational functions, and if time permits, some
recent extensions to the parametric case (by avoiding the use of complicated
barycentric forms of the interpolant, in the case of multiple parameters).
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Abstract

Optimal H2 approximation has been widely used for the development of efficient
model order reduction algorithms. Well known examples are IRKA [1] and
MIRIAm [2] respectively adopted in continuous and discrete time state-space
systems. These methods rely on the definition of a norm on a Hardy space
from which the H2 optimal interpolation conditions follow. One of the main
assumptions for IRKA and MIRIAm is that the transfer function of the full-
order model needs to be analytic on the right half complex plane and on the
outside of the unit disk respectively. However, there can be cases in which
the transfer function is analytic in domains that differ from the ones above.
Hence, we propose a framework to derive first-order interpolation conditions for
H2 optimality in a simply connected set. The theoretical background relies on
conformal maps and generalizes Hardy spaces to functions that are analytic on
specific domains. The objective is to eventually develop algorithms that can
be used to find a reduced order transfer function that satisfies H2 optimality
conditions in the chosen set.
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Abstract

Mathematical models of dynamical systems have seen a gradual increase
both in size and complexity, and together with these the necessity of computa-
tional power. Moreover, these models are often nonlinear, which makes them
more computationally expensive and limits their real-world applications. To
allow for faster simulations, Model Order Reduction (MOR) techniques in the
frequency and in the time domain have been developed.
In the frequency domain, these methods are usually related to the Volterra se-
ries [1]. This is an extension of the transfer function to nonlinear system, where
the input-output relationship is expanded through an infinite series of so called
Volterra kernels. The Volterra series is a powerful tool for the analysis of non-
linear systems, but its application can be complicated: research is still ongoing
regarding convergence conditions, and the identification of the kernels is not
straightforward.
On the other hand, the interest for time-domain MOR methods is raising, due
to their data-driven nature. We have developed a variant of the AAA MOR
method [2], called tLS-AAA, which employs time domain data to generate a
linear Reduced Order Model (ROM). This reduction method regards the sys-
tem as a black box and does not require any information on the input to generate
the ROM. tLS-AAA approximates the input-output relationship of the nonlin-
ear system, and it can be related to the Volterra series. By exploiting this
equivalence, tLS-AAA can be modified to generate a parametric linear ROM
which approximates the system output for periodic input functions. Moreover,
other techniques which employ the Volterra series in the context of condition
monitoring and system analysis can be redefined for the tLS-AAA method in
an efficient way.

Acknowledgements: This research is partly founded by internal KU Leuven
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Abstract

The Dynamic Mode Decomposition (DMD) is a method for computational
analysis of nonlinear dynamical systems in data driven scenarios. Based on high
fidelity numerical simulations and/or experimental data, the DMD can be used
to reveal latent structures in the dynamics or as a forecasting or a model order
reduction tool. Theoretical underpinning of the DMD is the Koopman operator
on a Hilbert space of observables of the dynamics under study.

The two main computational tasks in DMD analysis are: (i) data driven
Rayleigh-Ritz extraction of eigenvalues and eigenvectors using the subspace
spanned by the data snapshots; (ii) spatio-temporal representation of the snap-
shots using a subset of the computed eigenpairs, which amounts to solving a
structured least squares problem. The solutions of (i), (ii) allow for an anal-
ysis of the structure of the dynamics, forecasting and control. The numerical
realization of the method is in the framework of dense numerical linear algebra.

This talk presents a LAPACK implementation of new variants of the DMD
for the task (i), and it offers a numerical analysis with insights that provide
a better understanding of the accuracy of the method and of its limits. It
shows that the state of the art dense numerical linear algebra (perturbation
theory, numerical algorithms, software) is the tool of the trade for computational
analysis of complex nonlinear dynamics, in particular in data driven scenarios.
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Abstract

It is well known a lossless discrete mass-spring string can be identified from
its spectrum via the Lanczos algorithm assuming symmetry of the string with
respect to its center[1]. The impedance distribution of the continuum symmetric
string can be obtained via the finite-difference quadrature rules a.k.a.the optimal
grids as the limit of the discrete string [2]. A discrete damped string can be
also identified from the spectrum via the bi-Lanczos algorithm. However the
transition to the continuum damped problem might fail due to possibly negative
discrete dumpers that can be obtained even from dissipative spectral data. We
show how this problem can be circumvented in the reduced order Lippmann-
Schwinger framework a.k.a. the Lippmann-Schwinger-Lanczos algorithm. It
allows simultaneous estimation of both the losses and impedance profiles.
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Abstract

We propose a method to accelerate the solution of 3D FEM-discretized non-
linear eigenvalue problems by utilizing a reduced order model (ROM) via a
randomized projection onto a suitable subspace, with eigenpairs identical to the
full problem in a region of the complex plane (Beyn approach). The subspace
is automatically constructed by solving the full problem at a few random points
inside the region of interest. The obtained method is suitable for any nonlinear
eigenvalue problem given in the separable (Affine like) form. We test our the-
ory on a family of thermoacoustic application, and show how does the method
generalize to applications dealing with other vibrational problems.

This is a joint work with Georg A. Mensah, Alessandro Orchini and Philip
E. Buschmann.
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Abstract

In this work we present extensions of the Quadrature-based Balanced Trun-
cation (Quad-BT) framework of [1] to other types of balancing. Quad-BT,
a “non-intrusive” (data-driven) reformulation of the classical projection-based
balanced truncation for linear systems [2, 3], builds reduced-order models en-
tirely from system input/output response data (e.g., using transfer function
samples) without the need to access an explicit state-space realization of the
underlying system. We extend this data-driven framework to include other
types of balancing; namely, balanced stochastic truncation, positive-real bal-
ancing, bounded-real balancing, and frequency weighted balanced truncation.
This is accomplished by sampling certain spectral factors associated with the
system of interest. We verify this approach with several numerical examples.
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Abstract

There are various approaches to H2-optimal reduced-order modeling of (un-
structured) linear time-invariant dynamical systems, such as the iterative ra-
tional Krylov algorithm [4] which uses the rational interpolation framework.
Interpolatory model order reduction was also extended to structured linear sys-
tems [2]. We are interested in extending H2-optimal reduced-order modeling to
structured linear systems and investigating whether it necessitates interpolation.
InterpolatoryH2-optimality conditions have been established for certain second-
order systems and port-Hamiltonian systems [1], as well as special time-delay
system [6]. Furthermore, for a special class of parametric linear time-invariant
systems, interpolatory H2⊗L2-optimality conditions are known [3]. In this talk,
we present some generalizations of these results using the work on L2-optimal
reduced-order modeling [5] and present them on a few numerical examples.
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Abstract

Conventional structure preserving model order reduction (MOR) for port-
Hamiltonian (pH) systems focus on approximating the input-output dynamics
by (approximately) minimizing classical system norms, such as the Hardy H2

norm. Nevertheless, the definition of a pH system consists of two objects: the
input-output dynamics and an energy function, typically called the Hamilto-
nian. If we thus measure the approximation quality only with respect to the
input-output dynamics, then the approximation of the Hamiltonian is not re-
flected at all. This is particularly relevant since recent results [1] demonstrate
that modifying the Hamiltonian of the full order model (FOM) may yield better
reduced order models (ROMs), at least if only the input-output dynamics are an-
alyzed. In this talk, we take a first step towards the dual-objective optimization
problem for optimal approximating both objectives: the input-output dynam-
ics and the Hamiltonian, by noticing that in the pH ROM, we can modify the
Hamiltonian without changing the input-output dynamics. Thus, for a given pH
ROM, we can search for the reduced Hamiltonian that best approximates the
FOM Hamiltonian. We prove that the resulting optimization problem is strictly
convex and uniquely solvable. Moreover, we propose a numerical algorithm to
solve the optimization problem and demonstrate its applicability with two aca-
demic toy examples. This talk describes joint work with Paul Schwerdtner (TU
Berlin) and Benjamin Unger (U Stuttgart).
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Abstract

The Eigensystem Realization Algorithm (ERA) is a commonly employed system-
theoretical data-driven method to identify the underlying dynamic behavior of
a discrete-time system [1]. The algorithm works by first collecting a the sys-
tem’s impulse response data and then constructing the Hankel matrix. Finally
an SVD of the Hankel matrix allows to identify the underlying discrete-time
dynamical systems. Additionally, if enough data is available, the algorithm is
theoretically equivalent to discrete-time balanced truncation [2].

In this work, we propose a continuous-time eigensystem realization algorithm
(ctERA). To this end, we introduce new continuous-time Hankel matrices that
are constructed using the impulse response of the underlying dynamical system.
Based on those matrices, we can determine the McMillan degree of the under-
lying dynamical system and construct a parsimonious realization. Additionally,
we show the connections between ctERA and the new data-driven methodology
to compute balanced truncatioin via quadrature rules (quadBT) [3]. Moreover,
we show how both algorithms are related to the Hankel operator and allow to
construct balanced reduced models for infinite dimensional systems.
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Abstract

The dynamics of a linear time-invariant dynamical system can be expressed
by its transfer function H in the Laplace domain. For a given Laplace variable
s this can be written as H(s) = C(sE −A)

−1
B.

In the most simple case, i.e., when the system is single-input-single-output,
this is a scalar rational function. A natural question to ask, thus, is how to

compute much smaller matrices Ê, Â, B̂, Ĉ, such that Ĥ(s) = Ĉ(sÊ − Â)
−1

B̂
interpolates H in a given set of sj , j = 1, . . . , r.

The literature provides two well-known answers to this question. To compute
a surrogate via (intrusive) projection-based reduced-order modeling, one collects
an orthogonal basis of a rational Krylov subspace in a tall matrix V to form
Ê = V TEV , Â = V TAV , B̂ = V TB, Ĉ = CV . For (non-intrusive) data-driven
surrogate modeling, when one has measurements of H available, an alternative
is given by the Loewner framework. There, the surrogate model is derived as a
realization formed from Loewner and shifted Loewner matrices.

A common feature of both approaches is that the matrices X of interest
can be computed as the solutions of certain matrix Sylvester equations of the
form MXP + NXQ = R, where the eigenvalues of the pair (Q,P ) are the
interpolation points sj . For the Loewner framework P , Q, M and N are chosen
diagonal, while the right hand side encodes the measurements. In the moment
matching case, e.g., M = A, N = E and R = BR̃, for an R̃ such that (P−1Q, R̃)
is observable.

Now, performing excessive oversampling, i.e., drawing so many samples
that the encoded information becomes (almost) redundant, the solutions of the
Sylvester equations will have low (numerical) rank. In this contribution, we
investigate how iterative low-rank Sylvester solvers can be used to compute the
solution factors directly, rather than performing rank-truncation on the matrix
X.
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Abstract

Genuinely entangled subspaces are a class of subspaces in the multipartite
Hilbert spaces that are composed of only genuinely entangled states and are
thus a natural generalization of the completely entangled subspaces to the mul-
tipartite regime. They are thus an interesting object of study in the context of
multipartite entanglement. In this talk I will present some of our recent results
concerning characterization of this type of subspaces (such as criteria for being
genuinely entangled or self-testing statements), putting a particular emphasis
on the stabilizer subspaces known in the context of quantum error stabilizer
codes. In particular, I will discuss a conjecture that there are no genuinely
entangled multipartite stabilizer states (mixed states defined on stabilizer sub-
spaces) with positive partial transpositions. This talk is based on a series of
papers [1, 2, 3, 4].
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2019/34/E/ST2/00369.
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Abstract

In this talk, I will explain how some problems in quantum information the-
ory can be rephrased as inclusion problems of certain free spectrahedra. Free
spectrahedra typically arise as matricial relaxations of linear matrix inequalities.
A well-known example is the matrix cube. On the quantum side, I will focus
on measurement incompatibility: Two quantum measurements are compatible
if there exists a third one which implements both measurements at the same
time. The best known example of incompatible measurements are the position
and the momentum of a particle. Using the connection to free spectrahedra, we
can show that inclusion constants correspond to the robustness of measurement
incompatibility to white noise. This part of the talk will be based on [1], [2],
and [3].
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Abstract

Mutually unbiased bases (MUBs) are highly symmetric pairs of orthonor-
mal bases in finite-dimensional complex Hilbert space. Specifically, the modulus
square of the overlap between any two vectors from the two different bases is a
constant, the reciprocal of the dimension. In quantum information theory, every
orthonormal basis has an associated quantum measurement, and measurements
corresponding to MUBs are particularly useful in quantum information process-
ing tasks due to the symmetric nature of MUBs.
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MUBs can also be defined using the terminology of quantum measurements:
MUBs are d-outcome projective measurements on d-dimensional complex Hilbert
space such that if a quantum state yields a definite outcome on one of the mea-
surements, then it yields a uniformly random outcome on the other one. In
this talk I will introduce mutually unbiased measurements (MUMs) that are a
generalisation of this latter definition. In particular, the MUM definition co-
incides with the MUB definition without the assumption on the Hilbert space
dimension, making it a “device-independent” definition.

We provide a fully algebraic characterisation of MUMs in terms of the mea-
surement operators. Then, we devise a family of Bell inequalities, parametrised
by an integer d, such that the maximal Bell inequality violation certifies MUM
measurements with d outcomes in the associated Bell experiment. We show that
MUMs have the same entropic uncertainty relations and incompatibility robust-
ness as MUBs. On the other hand, MUMs are strictly more general than MUBs:
there exist MUMs that cannot be mapped to MUBs by any completely positive
unital map, and the number of d-outcome measurements that are pairwise un-
biased is unbounded, in stark contrast with the number of pairwise MUBs in
dimension d, which is bounded by d+ 1.
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The spectral variant of the quantum marginal problem
asks: Given prescribed spectra for a set of quantum

marginals, does there exist a compatible joint state? The
main idea of this work is a symmetry-reduced semidefinite

programming hierarchy for detecting incompatible
spectra. The hierarchy can provide refutations that are
dimension-free, certifying incompatibility in all local

dimensions. It equally applies to the compatibility of local
unitary invariants, to the sums of Hermitian matrices
problem, to optimize trace polynomials on the positive
cone, and to certify vanishing Kronecker coefficients.
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Abstract
A fundamental property of the quantum relative entropy is the data process-

ing inequality (DPI), stating that relative entropy cannot be increased by the
action of a quantum channel. The question when the DPI becomes an equality
was first answered by Petz [1], who showed that this occurs if and only if there
exists a channel that fully recovers both states. Moreover, the recovery channel
can be chosen to be universal, depending only on one of the states. Meanwhile,
it has been proved that the same is true for equality in the DPI for a number
of quantum distinguishability measures.

A much stronger approximate result, first proved by Fawzi and Renner [2]
in the special case of the quantum Markov chains, shows that there exists a
recovery map which recovers one of the states perfectly and the other state is
recovered up to an error bounded by the decrease in the relative entropy. Again,
the recovery map can be chosen universal [3]. (Approximate) recoverability has
found a number of applications in quantum information theory and different
areas of physics.

We use a recent integral formula for the relative entropy due to Frenkel [4]
for an easy proof of recoverability in terms of preservation of error probabili-
ties in hypothesis testing, or, equivalently, the L1-distance. We further discuss
relations between recoverability and some restricted settings of broadcasting.
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Abstract

Recovery maps were first introduced by Petz and later found rich applica-
tions in quantum information theory. In this talk, I will present a recoverability
result of Riemannian monotone metrics on the quantum state space. For two
quantum states, the monotone metric gives the corresponding quantum χ2-
divergence. We obtain a universal recovery bound for a special χ2 divergence. I
will also discuss applications to quantum metrology and quantum asymmetry.
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Abstract
We introduce a hierarchy of linear systems for showing that a given subspace
of pure quantum states is entangled (i.e., contains no product states). This
hierarchy outperforms known methods already at the first level, and it is

complete in the sense that every entangled subspace is shown to be so at some
finite level of the hierarchy. It generalizes straightforwardly to the case of
higher Schmidt rank, as well as the multipartite cases of completely and
genuinely entangled subspaces. These hierarchies work extremely well in

practice even in very large quantum systems, as they can be implemented via
elementary linear algebra techniques rather than the semidefinite

programming techniques that are required by previously-known hierarchies.
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We consider AKLT models on decorated versions of
simple, connected graphs G, defined by replacing all edges
of G with a chain of n sites, and show that they have a

spectral gap if the n is larger than a linear function of the
maximal vertex degree.

The AKLT model [Aff+87; Aff+88; KLT88] is a SU(2)-invariant quantum
spin model which has played a major role in the development of connections
between quantum information and quantum many body theory. A major open
problem is to understand for which lattices the model has a spectral gap, a non-
vanishing difference between the first excited energy level of the Hamiltonian
and the ground state energy. While originally only the case for the 1D spin chain
was shown to be gapped, it has been recently been shown that the model on
the hexagonal lattice is gapped [LSW20; PW19]; on the other hand, the AKLT
model on Cayley graphs with coordination number greater than 5 is known to
be gapless [FNW92].

In this talk, I will consider the AKLT model defined on on the decorated
version G(n) of a (potentially infinite) simple graph G with maximum degree
∆(G) < ∞, which is defined by replacing each original edge in G by a 1D chain
of length n (called the decoration number). I will then show that the AKLT
model on G(n) is gapped if the decoration parameter n is at least n(∆(G)),
where

n(d) =

{
d d ≤ 4
ln(2)
ln(3)d+

ln(f(d)))
ln(3) d > 4

(1)

where f(d) is the decreasing function

f(d) = 3 ·
2 + (1 + 1

4d
)d−1

[4− (1 +
√
3

2d
)d−1]2

. (2)

satisfying 1 ≤ f(d) ≤ f(5) ≈ 1.17851, i.e., our result shows that the AKLT
model on G(n) has a positive uniform gap when n is greater than a linear
function of ∆(G).
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Abstract

We study bipartite operators which stay invariant under the local action of
the diagonal unitary and orthogonal groups. We investigate structural proper-
ties of these operators, arguing that the diagonal symmetry makes them suitable
for analytical study, and that they are a rich source of (couter-)examples in the
theory of quantum information. We focus on positive semi-definite operators,
and relate their separability to completely positive matrices and some general-
izations of this notion.
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Abstract
A relevant open problem in the area of quantum computation is the existence
problem of quantum self-correcting memories at finite temperature, that is,
quantum systems that keep quantum information protected against thermal
errors without the need of active error correction. The general conjecture is
that there are no self-correcting quantum memories in 2D. However, despite
compelling evidence and aside from some particular cases, a formal proof has
remained elusive. In order to formally solve the problem, one has to consider

the thermal evolution operator modeled by the Davies master equation.
Self-correction would not be possible if the noise operator relaxes fast to the
Gibbs ensemble, where all information is lost. The key quantity that controls
this relaxation time is the spectral gap of the Davies Lindbladian generator, so
that having a gap independent of the system size excludes self-correction. Our
main result [3] shows that the conjecture holds for one of the most prominent
families of topologically ordered systems and original candidates: Kitaev’s

Quantum Double Models [4], complementing previous works by Alicki et al. [1]
for the toric code, and by Kómár et al. [2] for the Abelian case.
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Abstract A separable quantum state shared between parties A and B can
be symmetrically extended to a quantum state shared between party A and

parties B1, . . . , Bk for every k ∈ N. This phenomenon is known as “monogamy
of entanglement”; quantum states that are not separable, i.e., entangled, do
not have this property. We show that monogamy is not only a feature of
quantum theory, but that it characterizes the minimal tensor product of

general pairs of convex cones CA and CB : The elements of the minimal tensor
product CA ⊗min CB , which is the cone generated by all elements of the form

xA ⊗ xB , xA ∈ CA, xB ∈ CB , are precisely the tensors that can be
symmetrically extended to elements in the maximal tensor product

CA ⊗max C
⊗maxk
B for every k ∈ N, where CA ⊗max CB = (C∗

A ⊗min C∗
B)

∗ and
C∗

A, C
∗
B are the dual cones. We also present applications of the result, such as

to semi-device-independent characterization of high-dimensional steering.
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Abstract

Even though quantum theory uses complex Hilbert spaces and they play a
key “tidying” role in the theory, it is only fairly recently that physicists have
started to ask if the quantum world is inherently complex. Very recently a
Bell-like experiment based on a network scenario is proposed that numerically
separates complex from real quantum theory. In brief, it has now been shown
that the real-world is not!

In this talk we discuss the similarities/differences between the real and com-
plex case for various concepts like, entanglement and separability, positive ver-
sus completely positive maps and the various characterizations of entanglement
breaking maps, thereby pointing out a number of fundamental differences in
these two scenarios and discussing their implications in quantum information.
We also discuss the real version of the PPT-squared conjecture.
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Abstract

We examine the problem of characterizing which pure state we are holding
if promised to be given one from a finite set of (known) quantum states. It is
well-known that the states must be pair-wise orthogonal to learn which state
we are holding with certainty. In this talk we examine the antidistinguishing
problem where you want to guess a state you are not holding. We present
almost optimal bounds characterizing when a set of pure states can be perfectly
antidistinguished.
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Abstract

In this talk I will discuss recent advances on undertanding concentration
properties of quantum states. We will present an elementary proof that outputs
of shallow circuits satisfy a Gaussian concentration inequality and extend it to
other classes of physically relevant states. We will discuss additional functional
inequalities for such states, including a Poincaré inequality for outputs of shallow
circuits. We will then discuss the application of such inequalities to study the
limitations of shallow quantum circuits to solve certain optimization problems
and a new algorithm to simulate quantum circuits.

This is based on joint work with Cambyse Rouzé.
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Abstract

An Abstract Operator Systems (AOS) is a collection of a proper convex
cones inside the vector space of square matrices of dimension s tensored with a
vector field V , for all s ∈ N [1]. There are many examples of interesting AOS,
in particular when V is also a matrix space and we fix the cone of positive
semidefinite matrices on the first level. Well-studied examples are the operator
system of separable matrices (arising from theminimal tensor product), positive
simidefinite matrices, and block-positive matrices (from the maximal tensor
product) [2]. In the higher levels, the interaction between the positive cone and
the tensor product becomes particularly insightful.

We propose a generalized version of AOS, called the Astract Cone System
(ACS). We no longer restrict to matrix spaces (and their positive semidefinite
cones), but instead look at tensor products of V with arbitrary finitedimen-
sional vector spaces with involution. We reprove the most important theorems
about AOS in the general case: the existence of minimal and maximal ACS, the
existence of a finite dimensional realization as a concrete cone system, and that
free dual of a finitely realizable ACS is finitely generated. This generalization
not only sheds a new light on AOS and allows us to define them in a coordinate
free way, it also allows to rephrase recent studies [3, 4] on entanglement between
convex cones as ACS, offering a new toolbox and perspective.
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Abstract

Let G be a connected graph with adjacency matrix A(G) and distance matrix
D(G). Let dist(u, v) denote the distance between the pair of vertices u, v ∈
V (G), then the transmission trs(u) of vertex u is defined as

∑
v∈V (G) dist(u, v).

Let trs(G) be the diagonal matrix whose diagonal elements are the transmissions
of the vertices of G. And, let deg(G) be the diagonal matrix whose diagonal
elements are the degrees of the vertices of G. In this paper we investigate
the Smith normal form (SNF) and the spectrum of the matrices Ddeg

+ (G) :=
deg(G) + D(G), Ddeg(G) := deg(G) − D(G), Atrs

+ (G) := trs(G) + A(G) and
Atrs(G) := trs(G)−A(G). In particular, we explore how good the SNF and the
spectrum of these matrices are for determining graphs up to isomorphism. We
found that the SNF of Atrs has an interesting behaviour when compared with
other classical matrices. We note that the SNF of Atrs can be used to compute
the structure of the sandpile group of certain graphs. We compute the SNF of
Ddeg

+ , Ddeg, Atrs
+ and Atrs for several graph families. We prove that the SNF of

Ddeg
+ , Ddeg, Atrs

+ and Atrs determine complete graphs. Finally, we derive some
results about the spectrum of Ddeg and Atrs.
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Abstract

If X is a 1-walk regular graph (e.g. any distance-regular graph) we show
that by deleting edges inside a clique of X we obtain families of graphs that
are not necessarily isomorphic, but are cospectral with respect to four types of
matrices: the adjacency matrix, Laplacian matrix, unsigned Laplacian matrix,
and normalized Laplacian matrix.

This has lead us to consider a stronger version of cospectrality. Let the
degree matrix D of a graph X be the diagonal matrix with $i-th diagonal entry
equal to the valency of the i-th vertex of X. We say that graphs X1 and X2 are
degree similar if there is an invertible matrix L such that L−1A1L = A2 and
L−1D1L = D2. If X1 and X2 are degree similar then X1 and X2 are cospectral
with respect to all four types of matrices mentioned above. We have shown that
the converse is not true, and have constructed families of degree-similar graphs.
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Abstract

Two vertices, u and v, of a graph X are cospectral if the subgraphs X \ u
and X \ v are cospectral. A stronger version of this property arises in the study
of continuous-time quantum walks; two vertices, u and v are strongly cospectral
if the orthogonal projections of the elementary basis vectors eu and ev are either
equal up to sign, over each eigenspace of A(X). We relax this condition and
also allow a vector v to be strongly cospectral to a vertex u if eu and v are either
equal up to sign, over each eigenspace of A(X). In some restricted conditions,
we call such a vector v a phantom mate of vertex u. The property of being
strongly cospectral is an equivalence relation and partitions the vertices of the
graph into equivalence classes. We show that these equivalence classes are the
orbits of some 2-group acting on the graphs and use the existence of phantom
mates to investigate classes containing exactly three strongly cospectral vertices.
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Abstract

We consider matrices of the form qD+A, with D being the diagonal matrix
of degrees, A being the adjacency matrix, and q a fixed value. Given a graph H
and B ⊆ V (G), which we call a coalescent pair (H,B), we derive a formula for
the characteristic polynomial where a copy of same rooted graph G is attached
by the root to each vertex of B. Moreover, we establish if (H1, B1) and (H2, B2)
are two coalescent pairs which are cospectral for any possible rooted graph G,
then (H1, V (H1) \ B1) and (H2, V (H2) \ B2) will also always be cospectral for
any possible rooted graph G.
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Abstract

Galerkin discretization of Boundary integral operators for the scalar Helmholtz
equation results in large dense matrices. Owing to the separability of the Green’s
kernel, these matrices can however be well-approximated using data-compact
hierarchical matrices. Recently, in [1] we demonstrated that rational approxi-
mation in combination with frequency extraction leads to a data-compact ten-
sorial representation of the entire wave-number dependence of these hierarchical
BEM matrices. We showed that this construction can be done in almost linear
time and that the data requirements of the individual BEM matrices scale only
weakly with the wave number.
In this talk we extend our data-compact representation to include discontinuous
Galerkin discretization and set-valued rational functions. We introduce a sweep-
ing preconditioner arising almost ‘gratis’ from the same compact representation
and demonstrate the sweeping capabilities of our approach.
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Abstract
In this talk we consider the solution of the Fractional Ordinary Differential

Equation of the form

y(α)(t) = f̃(t, y(t)), y(0) = y0, t ∈ I = [t0, t1] ⊆ R, 0 < α ≤ 1,

where y(α)(t) is the αth order Caputo derivative of y, i.e.,

y(α)(t) =
1

Γ(1− α)

∫ t

t0

(t− τ)−αy′(τ) dτ.

For this task we propose extending the newly introduced ⋆-product approach,
originally developed for the solution ordinary differential equation case in [1, 2],
to treat this new class of problems. We will consider the differences and the
additional difficulties encountered in the construction of the matrices associated
with the new method; specifically regarding the stable and accurate calculation
of their coefficients. We will show some preliminary experiments to demonstrate
that this approach is promising and comparable with some of the widely used
methods in the literature.
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Abstract

Numerical methods for time-harmonic wave propagation phenomena are of-
ten computationally intensive, leading to high simulation costs, e.g., in outer-
loop applications like design optimization and uncertainty quantification. In
this framework, model order reduction methods can be used to obtain cheap
and reliable approximations of the expensive high-fidelity problem.

On one hand, intrusive algorithms like implicit moment matching and re-
duced bases can be applied to obtain a reduced model by (quasi-)optimal pro-
jection of the original problem onto a low-dimensional subspace. On the other
hand, non-intrusive methods like vector fitting and the Loewner framework build
a rational approximation of the solution without the need to access the high-
fidelity problem. However, this usually comes at the cost of “oversampling”,
i.e., solving the expensive high-fidelity problem more times than is necessary
with, e.g., intrusive methods.

In this talk, we describe the “minimal rational interpolation” method [1],
which combines some advantages of intrusive and non-intrusive methods. We
showcase a strategy for adaptive sampling [2, 3], which mimics the weak-greedy
reduced basis method without the need for intrusiveness. In this context, we
discuss how minimal rational interpolation is able to achieve accuracy and ef-
ficiency by leveraging the properties of a certain Gramian matrix, built from
high-fidelity data.
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Rational Krylov for Stieltjes matrix
functions with Kronecker structure
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Abstract

Evaluating the action of a matrix function on a vector, that is x = f(M)v,
is an ubiquitous task in applications. When M is large, one usually relies on
Krylov projection methods [1]. We provide effective choices for the poles of the
rational Krylov method for approximating x when f(z) is either Cauchy-Stieltjes
or Laplace-Stieltjes (or, which is equivalent, completely monotonic) and M is
a positive definite matrix. A relevant example of such functions is the inverse
fractional power x−α for 0 < α < 1, which appears in the solution of fractional
diffusion equations.

Relying on the same tools used to analyze the generic situation, we then
focus on the case M = I ⊗ A−BT ⊗ I, and v obtained vectorizing a low-rank
matrix; this finds application in solving fractional diffusion equation on two-
dimensional tensor grids. We see how to leverage tensorized Krylov subspaces
to exploit the Kronecker structure and we introduce an error analysis for the
numerical approximation of x. Pole selection strategies with explicit convergence
bounds are given also in this case.
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Abstract

Recently, randomized Krylov subspace methods based on the sketch-and-
solve paradigm have been successfully employed in the efficient solution of linear
systems [3, 4], eigenvalue problems [4] and for approximating the action of ma-
trix functions on vectors [1, 2]. In this setting, combining a basic Krylov method
with a suitably constructed (randomized) oblivious subspace embedding allows
to greatly reduce the cost of orthonormalization (and thus, in a HPC setting,
the amount of communication).

In this talk, we will discuss how to extend these techniques to the matrix
equation setting, with particular focus on the Sylvester equation

AX +XB = C,

which requires nontrivial modifications of the established algorithms, e.g., in
order to prevent excessive memory requirements for storing the approximate
solution. The efficiency of our proposed Krylov schemes in comparison to other
state-of-the art solvers is demonstrated with several numerical examples origi-
nating in the discretization of partial differential equations and in control.

In addition to showing experimental results, we also present theoretical con-
nections between sketched Krylov methods, Krylov methods with truncated
orthonormalization and Krylov methods working with non-standard (possibly
semidefinite) inner products. These allow to better understand and theoretically
justify the observed performance and stability properties of sketched Krylov
methods, a topic that is still far from being fully understood.

If time permits, we will also discuss implications of our theoretical findings
for the case of linear systems and matrix functions.
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Polynomial preconditioning with Faber
polynomials for the Helmhotz equation

Olivier Sète1
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Abstract

We consider polynomial preconditioning of a linear algebraic system Ax = b,
i.e., Ap(A)y = b and p(A)y = x, where the polynomial p is constructed as
follows. Let Ω ⊆ C be an inclusion set for the spectrum of A, where Ω is
compact with 0 /∈ Ω, simply connected, and possibly non-convex. Then p is
chosen as a truncated Faber series of 1/z on Ω.

This polynomial preconditioning is applied to the Helmholtz equation pre-
conditioned with the complex shifted Laplacian. In this case, we use a non-
convex ‘bratwurst’-shaped inclusion set to construct the polynomial p as de-
scribed above. In numerical experiments, this polynomial preconditioner leads
to a reduction of the number of GMRES iterations, and may also reduce the
computation time.

This talk is based on joint work [1] with Luis Garćıa Ramos and Reinhard
Nabben (TU Berlin).
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Quantum Krylov Methods:
What’s the Deal?
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Abstract

Classical methods based on Krylov subspaces are among the most successful
numerical linear algebra algorithms. More recently, quantum subspace methods
have become a promising class of hybrid quantum algorithms for computing
approximate eigenvalues in condensed matter physics and electronic structure
theory. In these quantum Krylov methods we prepare the states that form the
subspace basis on the quantum computer and the projected problem is retrieved
through quantum measurement. Next, we obtain the Ritz values through clas-
sically solving a generalized eigenvalue problem that is often ill-conditioned. In
this talk, we present an overview of quantum subspace algorithms from an NLA
perspective. We discuss why we believe they are promising, give some details
on how they can be implemented on quantum computers, and provide numeri-
cal and theoretical evidence of their convergence. We also present strategies to
improve the robustness of the convergence in the presence of noise.

Acknowledgements: Work supported by the U.S. Department of Energy
(DOE) under Contract No. DE-AC02-05CH11231, through the Office of Ad-
vanced Scientific Computing Research (ASCR).
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Abstract

The solution of a linear autonomous ODE system can be expressed by a matrix
exponential. An alternative method for solving such ODEs is based on a prod-
uct that generalizes the convolution, and it is known as the ⋆-product. A new
approach [1], based on the Legendre discretization of the ⋆-product has been re-
cently proposed. In this presentation, we propose a new method for computing
the matrix exponential based on this approach. It enables us to find the matrix
exponential efficiently. Our approach allows the ODEs solution to be expressed
through a linear system that can be alternatively formulated as a matrix equa-
tion. We use a Krylov subspace model reduction approach to solve the matrix
equation and so compute the matrix exponential. We provide numerical results
to demonstrate the effectiveness and efficiency of the new method.

Acknowledgements: Work supported by Charles University Research pro-
gram PRIMUS/21/SCI/009 and by the Magica project ANR-20-CE29-0007
funded by the French National Research Agency.
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Abstract

Darboux transformation can be considered as the result of factoring a self-
adjoint operator as a product of two others, whose permutation gives a new
self-adjoint operator. This transformation, initially presented as a powerful
tool in the field of integrable systems, also has applications in various areas of
mathematics and physics.

When this transformation is applied to Jacobi matrices, canonical repre-
sentation of self-adjoint operators, Darboux transformation is equivalent to a
Christoffel modification of the corresponding orthogonality measure, which mul-
tiplies it by a polynomial of degree one. The inverse Darboux transformation
corresponds to the so-called Geronimus transformation, which divides the mea-
sure by a polynomial of degree one and adds a possible mass point at the zero
of the polynomial.

ln the unitary case, Darboux transformation of the corresponding canonical
representatives, the CMVmatrices, requires a prior modification of these unitary
matrices by a Laurent polynomial, in order to transform them into self-adjoint
ones.The Darboux transformation generated in this way is also equivalent to a
Christoffel modification of the measure. In the corresponding inverse problem
some drawbacks arise. In fact, the inverse Darboux transformation leads to
spurious solutions which are neither unitary nor band matrices.

In this talk we will expose the Darboux transformation for CMV matrices
highlighting these drawbacks, such as the presence of spurious solutions. We
show how the spurious solutions are associated to certain Sobolev inner prod-
ucts.

The first part of this work was obtained in collaboration with Professor Fran-
cisco Marcellán.
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der the Multiannual Agreement with UC3M in the line of Excellence of Univer-
sity Professors, grant EPUC3M23 in the context of the V PRICIT (Regional
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Program of Research and Technological Innovation and by FEDER/Ministerio
de Ciencia e Innovación-Agencia Estatal de Investigación of Spain, grant PID2021-
124472NB-I00 and ERDF, ’Una manera de hacer Europa,’ the project UAL18-
FQM-B025-A (UAL/CECEU/FEDER) and the projects E26-17 and E48-20R
from Diputación General de Aragón (Spain).
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Time-and-band limiting for exceptional
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1 Departamento de Matemática Aplicada II, Universidad de Sevilla, Spain
E-mail: mirta@us.es

Abstract

In this talk we consider examples of exceptional orthogonal polynomials in
connection with the problem of time-and band-limiting.

For a given family of orthogonal polynomials one considers the global operator
defined by a full symmetric matrix whose entries are given by the truncated inner
products or an operator defined by an integral kernel. The problem is to search
for a local operator given by a narrow banded matrix or a differential operator
(respectively), with simple spectrum, commuting with the global one. The
existence of a commuting local operator is very useful to compute numerically
the eigenfunctions of the given global operator.

This question is motivated by the work of Claude Shannon and a series of
papers by D. Slepian, H. Landau and H. Pollak at Bell Labs in the 1960’s.

This is a joint work with F. Alberto Grünbaum, University of California,
Berkeley.

References
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Abstract In this talk, we are going to quickly review the basics of discrete
Darboux transformations for orthogonal polynomials. Then we will show how

such transformations lead to various orthogonalities such as Sobolev and
exceptional along with how they generate rational orthogonal functions.

Acknowledgements: Work partially supported by NSF DMS grant 2008844
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Comunicaciones, Escuela Técnica Superior de Ingenieros Informáticos
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Abstract

Matrix algebra tools like generalized eigenvalues of Hermitian positive defi-
nite matrices have been used in [1] and [2] to obtain information on approxima-
tion of polynomials in spaces of square integrable functions L2(µ) and also on
the support of µ, for a certain measure µ supported on the complex plane.
Our aim in this work is to study Sobolev orthogonal polynomials with the
approach of matrix analysis via the associated moment matrix. In particular
we study the behaviour of eigenvalues of Hermitian positive definite matrices
associated with inner Sobolev products with respect a set of measures in relation
with the problem of the location of zeros of Sobolev orthogonal polynomials
providing results in this context. As a consequence of our results we extend
the characterization for the boundedness of the multiplication operator, and
consequently the boundedness of the set of zeros of Sobolev polynomials given
in [3].

Acknowledgements: Work partially supported by grant MadQuantum-CM
supported by MCIN with funding from European Union NextGenerationEU
(PRTR-C17.I1) and funding from the Comunidad de Madrid.
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2 Departamento de Matemática,Universidade de Aveiro, Portugal
E-mail: foulquie@ua.pt
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Abstract

Spectral and factorization properties of oscillatory matrices leads to a spec-
tral Favard theorem for bounded banded matrices, that admit a positive bidiag-
onal factorization, in terms of sequences of mixed multiple orthogonal polyno-
mials with respect to a set positive Lebesgue-Stieltjes measures. Also, a mixed
multiple Gauss quadrature is proven and corresponding degrees of precision are
found.

Acknowledgements: Work supported by CMUC, Centro de Matemática da
Universidade de Coimbra and by FCT, UID/MAT/00324/2020, also by CIDMA,
Center for Research and Development in Mathematics and Applications da Uni-
versidade de Aveiro and by FCT, UIDB/MAT/UID/04106/2020, and by Agen-
cia Estatal de Investigación Española, under projects PGC2018-096504-B-C33,
Ortogonalidad y Aproximación: Teoŕıa y Aplicaciones en F́ısica Matemática,
and PID2021-122154NB-I00, Ortogonalidad y Aproximación con Aplicaciones
en Machine Learning y Teoŕıa de la Probabilidad
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BERNSTEIN-SZEGŐ MEASURES IN THE PLANE

JEFFREY GERONIMO

Abstract. We consider a class of Bernstein-Szegő measures on R2 which is
a natural extension of the one-dimensional class of Bernstein-Szegő measures.
The spectral properties of these measures will be discussed and conditions
involving finitely many moments which completely characterize this class will
be given. This work was in done in collaboration with P. Iliev.
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Abstract

Our aim in this work is to study the problem of the location of zeros of Sobolev
polynomials associated to compactly supported measures in the complex plane
with the approach of matrix analysis via the associated moment matrix as in
[2]. In particular, we obtain some results concerning boundedness of the multi-
plication operator in Sobolev spaces, and consequently of the set of zeros, using
the matrix approach to bounded point evaluation of a measure introduced in
[1]. The notion of bounded point evaluation is closely related to polynomial
approximation [3], [1]. We also introduce and study certain polynomial inequal-
ities involving the derivates of the polynomials in order to obtain examples of
sets of measures for which the zeros of the associated Sobolev inner products
are uniformly bounded.
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Abstract

We introduce the Christoffel function (CF), a well-known tool in theory of ap-
proximation and orthogonal polynomials. We will briefly describe how the CF
turns out to also provide a quite easy-to-use tool to help solve interesting prob-
lems in data analysis [1, 2] (e.g., outlier detection, support inference, density
approximation, classification). We will also discuss some of its links (in the
author’s opinion some surprising) with seemingly unrelated topics, like e.g. cer-
tificates of positivity in real algebraic geometry, equilibrium measure of compact
sets, polynomial Pell’s equation, and duality in polynomial optimization [3, 4].

Acknowledgements: Work partially supported by the french ANR agency
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Linear systems of moment differential
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Alberto Lastra1
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Abstract

The general solution to a linear system of moment differential equations

∂my = Ay

is constructed via kernel functions for generalized summability. A stands for a
matrix with complex elements. The operator ∂m is a generalization of the clas-
sical derivative which depends on a fixed sequence m of positive real numbers.

Several applications related to different sequences m will be considered in
the talk.

Also, the asymptotic growth of the solutions at infinity is described in terms
of the associated moment sequence in some cases and from different points of
view.

Acknowledgements: Work partially supported by project PID2019-105621GB-
I00 of Ministerio de Ciencia e Innovación, Spain, by Dirección General de Investi-
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de Madrid (Spain) and Universidad de Alcalá, under grant CM/JIN/2021-014,
Proyectos de I+D para Jóvenes Investigadores de la Universidad de Alcalá 2021,
and the Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación
MCIN/AEI/10.13039/501100011033 and the European Union “NextGeneration
EU”/ PRTR, under grant TED2021-129813A-I00.
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Jacobi matrices on binary trees:
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Abstract

We consider tridiagonal Jacobi matrices (or so-called discrete Schrödinger
operators) on graphs. One of the methods to implement such operators on
homogeneous trees is based on the Hermite–Padé interpolation problems for
perfect systems, see [1]. The Jacobi matrices are determined by the nearest-
neighbor recurrence coefficients for the multiple orthogonal polynomials. For
one important class of perfect systems, the so-called Nikishin systems, it is
known [2] that such a construction leads to unbounded operators. We pose
another interpolation problem for the Nikishin systems. Its solutions also satisfy
the nearest-neighbor recurrent relations, but the corresponding coefficients and
the Jacobi matrix turn out to be bounded, see [3].
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Lax-type pairs in the theory of bivariate
orthogonal polynomials

Teresa E. Pérez
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Abstract

The so-called bivariate orthogonal polynomial systems, that is, sequences of
bivariate polynomials written as vector polynomials of increasing size orthogonal
with respect to a weight function, satisfy two three term relations with matrix
coefficients. In this work, introducing a time-dependent parameter, we solve a
Lax-type pair system for the coefficients of the three term relations. We also
deduce several characterizations relating the Lax-type pair, the shape of the
weight, Stieltjes function, moments, a differential equation for the weight, and
the bidimensional Toda-type systems.

This is a join work with A. Branquinho, A. Foulquié-Moreno and M. A.
Piñar.
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CEX2020-001105-M.
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Abstract

The classical Hermite–Biehler theorem describes possible zero sets of com-
plex linear combinations of two real polynomials whose zeros strictly interlace.
We provide the full characterization of zero sets for the case when this interlacing
is broken at exactly one location.

Using this we solve the direct and inverse spectral problem for rank-one
multiplicative and two-rank additive perturbations of finite Jacobi matrices.
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On generating Sobolev orthogonal
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Abstract

Polynomials orthogonal with respect to an inner product on the real line
satisfy a three term recurrence relation. The recurrence coefficients can be
represented by a tridiagonal matrix. For generating nonclassical orthogonal
polynomials the method of choice is based on performing unitary similarity
transformations on a diagonal matrix, whose entries are the nodes of a Gaussian
quadrature rule for the inner product. The connection between this method and
orthogonal polynomials can be described using Krylov subspaces. Consider a
Krylov subspace generated by the diagonal matrix of the nodes and a starting
vector containing the weights of the quadrature rule. Then the tridiagonal
matrix is the orthogonal projection of the diagonal matrix onto this subspace. In
this presentation we will explore the case where the Krylov subspace is generated
by a Jordan matrix. The projection of this Jordan matrix onto the Krylov
subspace results in a Hessenberg matrix that contains the recurrence coefficients
for polynomials orthogonal with respect to a Sobolev inner product. This is an
inner product that involves the polynomials themselves and the derivates of
these polynomials. Based on this connection we propose two new algebraic
methods for the numerical generation of Sobolev orthogonal polynomials and
compare them to existing methods.
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Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México.
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The three-term recurrence relation satisfied by a sequence of orthogonal polynomials

pn(x) =
n∑

k=0

cn,kx
k

can be expressed as the matrix equation LC = CX, where L is the infinite tridiagonal
Jacobi matrix whose entries are the recurrence coefficients, C = [cn,k], and X is the right
shift matrix that represents the operator of multiplication by x. Since C is invertible we
have C−1LC = X and therefore C−1u(L)C = u(X) for every polynomial u(x). We use
this matrix equation to obtain simple algebraic formulas for the linearization coefficients
d(n,m, k) that satisfy

pn(x)pm(x) =

n+m∑
k=0

d(n,m, k)pk(x),

and also for the corresponding coefficients for the linearization formula where the sequence
pk in the right-hand side is replaced by another sequence vk(x) of orthogonal polynomials.
We also obtain the connection coefficients for the pair of sequences {pn} and {vn} and
recurrence relations for the linearization coefficients. The linearization and connection
coefficients are expressed in terms of the coefficients of the three-term recurrence relations.
The proofs are algebraic and do not use the orthogonality of the polynomial sequences.

1
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Abstract

A sign pattern is an array with entries in {+,−, 0}. A matrix Q is row or-
thogonal if QQT = I. The Strong Inner Product Property (SIPP), introduced
in [B.A. Curtis and B.L. Shader, Sign patterns of orthogonal matrices and the
strong inner product property, Linear Algebra Appl. 592: 228–259, 2020], is an
important tool when determining whether a sign pattern allows row orthogo-
nality because it guarantees there is a nearby matrix with the same property,
allowing zero entries to be perturbed to nonzero entries, while preserving the
sign of every nonzero entry. This paper uses the SIPP to initiate the study of
conditions under which random sign patterns allow row orthogonality with high
probability.
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Minimum rank bounds for cobipartite
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Abstract

A zero-nonzero pattern matrix is a combinatorial object specifying exactly
where the zero and nonzero entries occur in some matrix. What can such a
description tell us about the rank of the matrix?

A related problem begins with a graphG on n vertices, and seeks the smallest
rank of a symmetric n× n matrix whose nonzero entries off the diagonal occur
exactly according to the edges of G.

Informally, we may refer to the former problem as the “minimum rank prob-
lem for zero-nonzero matrix patterns” and the latter problem as the “minimum
rank problem for simple graphs” (which is equivalent to the maximum eigen-
value multiplicity problem for simple graphs). Foundational results on the for-
mer problem were given in [1], which also established connections between the
two problems. In particular, the minimum rank of a matrix that is cobipartite
(i.e., its complement is bipartite) was shown to be given by the minimum rank
of the zero-nonzero pattern describing the pattern of edges between the two
cocliques into which the vertex set is partitioned.

Our present work is focused on connecting combinatorial bounds in the set-
ting of one problem to corresponding bounds in the other, specifically in the case
of cobipartite graphs. For these graphs, we may consider various zero forcing
parameters that are used to bound the minimum rank, while for the correspond-
ing zero-nonzero patterns we have the lower bound of the triangle number. We
present some results that relate these bounds, and explore how this can shed
light on the question of which patterns and graphs actually achieve equality
between these bounds and the minimum rank itself.
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The difficulty of minimum rank 3
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Abstract

The problem of minimum rank for a graph G is an easier subcase of the
Inverse Eigenvalue Problem for G. It asks for the smallest possible rank of a
real symmetric matrix whose pattern of off-diagonal nonzero entries is exactly
specified byG. The minimum rank of any induced subgraph gives a lower bound,
and to rule out rank 0, rank 1, or rank 2, a finite number of obstructions suffices.
We show that for rank 3 no such finite family exists, and furthermore that
given any system S of polynomial equations in multiple unknowns with integer
coefficients, a graph GS can be produced in polynomial time such that GS has
minimum rank 3 if and only if the equations in S can be solved simultaneously
over the real numbers. As a result, the problem of minimum rank 3 is complete
for the complexity class ∃R, the existential theory of the reals.
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Abstract

The inverse eigenvalue problem for graphs asks what spectra can be obtained
by a matrix whose zero/nonzero pattern is specified by a given graph. While very
challenging in general, an important subquestion is to determine, for a graph
G, the parameter q(G), which is the minimum number of distinct eigenvalues
that can be achieved by a matrix whose zero/nonzero pattern is given by G.
We will discuss results relating to how bordering a matrix with new rows and
columns can affect the number of distinct eigenvalues. We will further discuss
how these techniques give results relating to determining q(G) when G is the
join of two graphs. This work was done in conjuction with the AIM research
group on q(G) for joins.



25th Conference of the International Linear Algebra Society (ILAS 2023)

542	 Madrid, Spain, 12-16 June 2023

Generic realisability and applications

Rupert Levene1, Polona Oblak2, Helena Šmigoc3

1 School of Mathematics and Statistics, University College Dublin, Ireland
E-mail: rupert.levene@ucd.ie

2 Faculty of Computer and Information Science, University of Ljubljana, Slovenia
E-mail: polona.oblak@fri.uni-lj.si

3 School of Mathematics and Statistics, University College Dublin, Ireland
E-mail: helena.smigoc@ucd.ie

Abstract

We introduce a notion of “generic realisability” for a graph, and explain why
complete graphs and paths have this property. Applications are given to the
problem of computing the minimum number of distinct eigenvalues of a graph.
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Abstract

Let A be an n × n real matrix. As shown in the recent paper “The bifurca-
tion lemma for strong properties in the inverse eigenvalue problem of a graph”,
Linear Algebra Appl. 648 (2022), 70–87, by S.M. Fallat, H.T. Hall, J.C.-H.
Lin, and B.L. Shader, if the manifolds MA = {G−1AG|G ∈ GL(n, R)} and
Q(sgn(A)) (consisting of all real matrices having the same sign pattern as A),
both considered as embedded submanifolds of Rn×n, intersect transversally at
A, then every superpattern of sgn(A) also allows a matrix similar to A. Let
X = [xij ] be a generic matrix of order n whose entries are independent vari-
ables. In this paper, this similarity-transversality property is characterized in
a direct and convenient way by the full row rank property of the Jacobian ma-
trix of the entries of AX − XA at the zero entry positions of A with respect
to the nondiagonal entries of X. This new approach makes it possible to take
better advantage of the combinatorial structure of the matrix A, and provides
theoretical foundation for constructing matrices similar to a given matrix while
the entries have certain desired signs. In particular, several important classes of
zero-nonzero patterns and sign patterns that require or allow this transversality
property are identified. Examples illustrating many possible applications (such
as diagonalizability, number of distinct eigenvalues, nilpotence, idempotence,
semi-stability, eigenvalues and their algebraic and geometric multiplicities, Jor-
dan canonical form, minimal polynomial, and rank) are provided.
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Abstract

Let G be a simple graph on n vertices. Let S(G) be the set of n × n real
symmetric matrices whose i, j-entry, i ̸= j, is nonzero whenever {i, j} is an edge
of G; the diagonal entries can be any real numbers. Suppose A ∈ S(G) has the
strong spectral property (SSP) and H is a supergraph of G with V (G) = V (H).
It is known that there is a matrix A′ ∈ S(H) such that spec(A′) = spec(A).
This means the pattern of A can be perturbed while preserving the spectrum.
In contrast, we will introduce the bifurcation lemma — if a matrix A has the
SSP, then for any small perturbation Λ of spec(A), there is a matrix A′ ∈ S(G)
with spec(A′) = Λ. Many applications of the bifurcation lemma to the inverse
eigenvalue problem and the sign pattern problem will be demonstrated.
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Abstract

Zero forcing game starts with an initial set of blue vertices of a graph, and
the goal is to color all vertices blue under some color change rule at minimum
cost. The original zero forcing game is a one-player game that gives a combina-
torial upper bound for the maximum nullity of a family of matrices associated
with the graph. A modified zero forcing game requires two players and gives
a combinatorial upper bound, Zq(G), for the maximum nullity of the matri-
ces with q negative eigenvalues. In this talk, we present a formula for Zq of
connected threshold graphs as well as some other families of graphs.
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Abstract

The Inverse Eigenvalue Problem (IEP-G) for a graph G is a problem of
determining all possible multisets of eigenvalues of symmetric matrices, whose
pattern is constrained by graph G. This question is in general very difficult
to answer. The introduction of the strong spectral properties (SSP) in [2] has
made a powerful impact on the IEP-G and related problems. The matrices with
the SSP can be perturbed while preserving the eigenvalues and still controlling
the pattern. The motivation for our work comes from the Matrix Liberation
Lemma introduced in [3], which extends the similar conclusions for matrices
that do not have the SSP.

In this talk we introduce the liberation set of a matrix to present an equiv-
alent result to the Matrix Liberation Lemma, which is easier and less technical
to apply. We define the liberation set of a graph G and present the application
to the disjoint unions of graphs. In particular, in [1] a huge advance towards
resolving the IEP-G for graphs on six vertices was made, with only spectral
arbitrariness of few multiplicity lists left to be resolved, and we will present,
how our methods resolve some of those open cases.

Acknowledgements: Work partially supported by the Young Scholar Fellow-
ship Program grant no. NSTC-110-2628-M-110-003 from the National Science
and Technology Council of Taiwan (Jephian C.-H. Lin) and Slovenian Research
Agency research core funding no. P1-0222 and project no. J1-3004 (Polona
Oblak).
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Abstract

We will discuss the change in vertex status -as Parter, neutral or downer -
(relative to an undirected graph G, a matrix A whose graph is G and a desig-
nated eigenvalue λ of A) after removal of another vertex of given status. By
the status of a vertex v of G, we refer to the change in multiplicity of λ when
v is removed from G to leave the principal submatrix A(v) of A. Along the
way we present a special type of neutral vertices that play an important role on
explaining the differences between the case of real symmetric matrices and the
case of real combinatorially symmetric matrices.

Acknowledgements: This is a joint work with Charles Johnson (College of
William and Mary, Williamsburg, USA) and Kenji Toyonaga (National Institute
of Technology, Kitakyushu, Japan). This work is funded by national funds
through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the
scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for
Mathematics and Applications).
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Abstract

We explore the problem of determining the number of distinct eigenvalues
allowed by a matrix sign pattern. While this inverse eigenvalue problem is
analogous to a problem of determining the number of distinct eigenvalue allowed
by a graph, there are significant differences. The graph problem restricts its
attention to symmetric matrices and has freedom on the main diagonal of the
matrix. The sign pattern problem involves fixed signs and/or zeros on the main
diagonal and does not restrict attention to symmetric matrices. As such, while
the graphs that allow for exactly one eigenvalue is limited to empty graphs, the
class of sign patterns that allow exactly one eigenvalue is nontrivial, including
spectrally arbitrary patterns and the wider class of potentially nilpotent sign
patterns. We describe some digraph characteristics that bound the number of
eigenvalues allowed by a sign pattern, and observe some Jacobian conditions
that preserve properties of eigenvalues for superpatterns.

Acknowledgements: Research supported in part by NSERC Discovery Grants

RGPIN-2021-03775 (JB), RGPIN-2016-03677 (PvD), RGPIN-2016-03867 (KVM), an

NSERC USRA (CB) and the American Institute of Mathematics.

References

[1] J. Breen, C. Brouwer, M. Catral, M. Cavers, P. van den Driessche, and K.
N. Vander Meulen. Minimum number of distinct eigenvalues allowed by a
sign pattern. Linear Algebra Appl. 654: 311–338 (2022).

[2] M. Cavers and S. Fallat. Allow problems concerning spectral properties of
patterns. Elect. J. Linear Alg. 23: 731–754 (2012).

[3] Z. Li and L. Harris. Sign patterns that require all distinct eigenvalues. JP
J. Algebra Number Theory Appl. 2: 161–179 (2002).





MSC18. 
Riordan arrays 

and related topics
Ana Luzón, Manuel A. Morón





25th Conference of the International Linear Algebra Society (ILAS 2023)

Madrid, Spain, 12-16 June 2023	 553

Properties of Riordan quotients
Paul Barry

Natural partial orderings and associated Riordan poset matrices
Gi-Sang Cheon, Hong Joon Choi, Bryan Curtis, Kuk-Won Kwon

From Alexandroff spaces to Riordan matrices
Pedro J. Chocano, Ana Luzón, Manuel A. Morón, Manuel A., Luis Felipe Prieto-Martínez

Professor
Tian-Xiao He

Exponential Riordan matrices and decomposition of Hankel matrices
Emanuele Munarini

The binary Pascal matrix and associated algebras
Nikolaos Pantelidis, Gi-Sang Cheon, Hong Joon Choi

Abstract cell complexes and Riordan matrices
Luis Felipe Prieto-Martínez, Pedro J. Chocano, Ana Luzón, Manuel A. Morón

Combinatorial statistics on Catalan words avoiding consecutive patterns
Jose Ramirez, Jean-Luc Baril

Total positivity of Riordan arrays
Roksana Słowik

Riordan Group Involutions
Louis Shapiro, Alexander Burstein

Minho Song, Jihyeug Jang, Louis Shapiro
Combinatorics on the negative part of Riordan matrices

Some properties of polynomial sequences associated with generalized Ri- ordan matrices
Luis Verde-Star





25th Conference of the International Linear Algebra Society (ILAS 2023)

Madrid, Spain, 12-16 June 2023	 555

Properties of Riordan quotients

Paul Barry
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Abstract

We investigate the qoutient matrix of two (ordinary) Riordan arrays (g1, f1)
and (g2, f2). This is defined to be the lower-triangular matrix whose generating
function is equal to the quotient of the generating functions of the two defining
matrices. We detail such features as the row sums and column sums of these
matrices, along with a characterization of their products. We show that these
quotients are closely associated with almost-Riordan arrays of first order. In
particular, each almost-Riordan array is shown to be the quotient of a Riordan
array and a (possibly stretched) Riordan array. The coefficient array of the
Chebyshev polynomials of the first kind occurs as a special example.
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Natural partial orderings and associated
Riordan poset matrices
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Abstract

A partial ordering � on a finite or infinite set X of integers {0, 1, 2, . . .} is
natural if x � y implies x ≤ y. Every partial ordering of a finite (possibly
infinite) set is isomorphic to a natural partial ordering. Moreover, all natural
partial orderings on the n-set [n] are in bijection with n× n binary lower trian-
gular matrices with ones on the main diagonal that contain no ( 1 1

0 1 ) submatrix
whose upper right entry 1 is on the main diagonal. These lower (possibly infi-
nite) triangular matrices are called poset matrices. A natural partial ordering
associated to a poset matrix B is called Riordan if B is a binary Riordan matrix
over the field Z2 = {0, 1}. In this talk, we discuss about possible (0, 1)-patterns
to be infinite Riordan poset matrices. In addition, we investgate avoiding posets
for natural partial ordering to be a Riordan poset.
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E-mail: anamaria.luzon@upm.es
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Abstract

In this talk, we recall basic concepts of the theory of Alexandroff spaces
(or partially ordered sets) and see how these spaces are related to simplicial
complexes. Later, we introduce the non-hausdorff join. This construction allows
us to construct some Riordan matrices, using m,q-cones, from partially ordered
sets. Thus, for each pair of natural numbers m and q there exists an Alexandroff
space realizing the previous Riordan matrix. We study the homotopy type of
these spaces and consider some invariants for them.
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Vertical Recurrence Relation of Riordan
Arrays, Quasi-Riordan Group and its
Subgroups and Extended Subgroups
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Abstract
It is known that the entries of a Riordan array satisfy horizontal recurrence
relations represented by the A- and Z-sequences. Recently, we studied a
vertical recurrence relation approach to Riordan arrays. This vertical

recurrence approach gives a way to represent the entries of a Riordan array
(g, f) in terms of a recurrence linear combination of the coefficients of g. This
vertical recurrence relation can be represented by matrices. The set of all

those matrices forms a group, named the quasi-Riordan group. This talk gives
the normal subgroup of the quasi-Riordan group and studies the relationship
between the quasi-Riordan and the Riordan group. By means of the study,

several extended subgroups of the quasi-Riordan group and the Riordan group
are obtained. The corresponding horizontal recurrence relation and vertical
recurrence relation are given. The A-sequences and the vertical recurrence

relations of the Riordan subgroups and those of the corresponding extensions
are also given. Finally, we will show that every Riordan array is the half

Riordan array of a unique Riordan array, and the vertical recurrence relation
of the column entries of the half Riordan array is equivalent to the horizontal

recurrence relation of the original Riordan array’s row entries.
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Exponential Riordan matrices and
decomposition of Hankel matrices
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Abstract

In this talk, we will characterize the infinite matrices A = [ai,j ]i,j≥0 admit-
ting an LDU-decomposition RDST , where D is a diagonal matrix and R and
S are exponential Riordan matrices [4]. Similarly, we characterize the infinite
matrices A = [ai,j ]i,j≥0 admitting an LTU-decomposition RTST , where T is
a tridiagonal matrix and R and S are exponential Riordan matrices. These
characterizations are given in terms of the double exponential generating se-
ries of the matrix A and the exponential generating series of the other involved
matrices.

When the matrix A admits a decomposition of this kind, these characteri-
zations provide a relatively simple algebraic method to obtain explicitly such a
decomposition. In particular, this method works when we consider the Hankel
matrices generated by certain classical Appell and Sheffer sequences [3].

We illustrate this method presenting in detail some of the results obtained
[2] for the Hankel matrices generated by the Appell sequence given by the gen-
eralized rencontres polynomials [1]. Furthermore, we give a characterization of
these polynomials in terms of the determinants of the associated partial Han-
kel matrices. Finally, as a byproduct, we give a similar characterization of the
generalized derangement numbers.
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The binary Pascal matrix and
associated algebras
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Abstract

The concept of Riordan posets has been recently introduced by Cheon et al.
[1]. The study of these objects has given a new dimension on the general research
of Riordan arrays and related topics. In this talk, we discuss the algebras that
defined by an important type of Riordan posets, such as the Pascal poset.

Presenting the Pascal group Pn and the incidence algebra I(P), we analyse
their structural and combinatorial properties through the number of the gener-
ators and the subgroups of Pn, and we link it with other known groups, such as
the Heisenberg group. We show that Pn is in fact a matrix Lie group and we
present the Pascal Lie algebra. Finally, we discuss open problems and possible
directions of our research.
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E-mail: anamaria.luzon@upm.es
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Abstract

Abstract (or geometric) cell complexes are objects of great interest in Math-
ematics, with special mention to Image Analysis, that generalize simplicial com-
plexes and cubical complexes. There are several approaches to this concept (see
[1]), but all of them follow a similar idea: cell complexes are obtained from ele-
mentary pieces, called cells, that usually are abstract (or geometric) polytopes.

Their generality makes much more difficult the study of their combinatorial
properties. So we will focus in these cell complexes such that their cells of the
same dimension are (combinatorially) isomorphic.

In this talk: (i) we show that, for some interesting families of cells, if we
write the number of j-faces of each i-cell in a matrix [mij ]0≤i,j<∞, we obtain a
Riordan matrix of the type ( 1

(1−ax)n ,
x

1−ax ), for a, n ∈ Z (the case a = 1, n = 2

corresponds to simplices and has already been studied in depth, as the reader
may see, for example, in [2]) and (ii) we study some consequences of the previous
fact, such as the existence of linear forms for the set of face vectors which are
invariants with respect to some topological properties.
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Combinatorial statistics on Catalan
words avoiding consecutive patterns

José L. Ramı́rez 1
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Abstract

A Catalan word w = w1w2 · · ·wn is one over the set of positive integers
satisfying w1 = 1 and 1 ≤ wi ≤ wi−1 + 1 for i = 2, . . . , n. Catalan words of
length n are enumerated by the Catalan number Cn = 1

n+1

(
2n
n

)
. We compute

the distribution of the descent statistic and the last symbol on the Catalan words
avoiding a consecutive pattern of length at most three. We use Riordan arrays
and the symbolic method to characterize the associated counting sequences.
Based on joint work with J.-L. Baril, D. Colmenares, D. Silva, L.M. Simbaqueba,
and D. Toquica.
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Total positivity of Riordan arrays
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Abstract

We are going to present the results the results on the total positivity of
Riordan arrays. We will start with recalling some sufficient conditions for a
Riordan array to be totally positive [3, 4, 5]. Then, we will discuss why those
conditions are not necessary [1, 2].
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  
          

            
         
           
              
                
         


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Abstract

If a sequence indexed by nonnegative integers satisfies a linear recurrence
without constant terms, one can extend the indices of the sequence to negative
integers using the recurrence. Such a combinatorial result about the ‘negative
terms’ of a sequence is called a combinatorial reciprocity theorem. In this talk,
we introduce Riordan matrices and establish their combinatorial reciprocities
considering negatively indexed columns of Riordan matrices. Actual examples
will be presented, which are related to generalized Catalan numbers, generalized
Schröder numbers, etc. This is joint work with Jihyeug Jang and Louis W.
Shapiro.
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Some properties of polynomial sequences associated with generalized Ri-

ordan matrices
We use the theory of polynomial sequences of interpolatory type to obtain properties

of the polynomial sequences associated with the rows of Riordan matrices and exponen-
tial Riordan matrices. We describe the connection of such polynomial sequences with
polynomial interpolation formulas. We also find linearization and connection coefficients,
recurrence relations, and generating functions. The representation of composition opera-
tors as pseudo-exponential functions of matrices and the similarity of infinite Hessenberg
matrices are other useful tools to study all kinds of infinite matrices that we will discuss.

The theory of polynomial sequences of interpolatory type was introduced around 1992
and is a form of umbral calculus, closely related with composition and multiplication
operators, that can be used to obtain easily numerous results about Riordan matrices and
their generalizations.
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Accurate eigenvalues of some
generalized sign regular matrices via

relatively robust representations

Rong Huang1

1 School of Mathematics and Computational Science, Hunan University of Science and
Technology, Xiangtan 411201, Hunan, China.

E-mail: rongh98@aliyun.com

Abstract In this talk, we consider how to accurately solve the
nonsymmetric eigenvalue problem for a class of generalized sign regular

matrices including extremely ill-conditioned quasi-Cauchy and
quasi-Vandermonde matrices. The problem of performing accurate

computations with structured matrices is very much a representation problem.
We first develop a relatively robust representation (RRR) for this class of

matrices by introducing a free parameter, which exceeds an essential
threshold, into an indefinite factorization. We then design a new O(n3)

algorithm to compute all the eigenvalues of such matrices with high relative
accuracy, as warranted by the RRR. Error analysis and numerical experiments

are performed to illustrate the high relative accuracy.

Acknowledgements: Research supported by the National Natural Science
Foundation of China (Grant No. 11871020), the Natural Science Foundation
for Distinguished Young Scholars of Hunan Province (Grant No. 2017JJ1025)
and the Research Foundation of Education Bureau of Hunan Province (Grant
No. 18A198).
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Bidiagonal decompositions of singular
sign regular matrices of signature

(1, . . . , 1,−1)
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Abstract

The bidiagonal decompositions of the totally nonnegative and sign regular ma-
trices have become an instrumental tool to parameterize, study the properties
of, and perform accurate computation with these matrices.

Recently, Rong Huang [1] demonstrated how to parameterize the class of
nonsingular sign regular matrices with signature (1, . . . , 1,−1) as a product of
(anti) bidiagonals and also, how to perform computations with them to high
relative accuracy.

In this talk we show how to generalize the above results to the singular
case and to incorporate the singularity seamlessly into their existing bidiagonal
decompositions and algorithms for accurate computations.

These singular sign regular matrices are also totally nonnegative, a class
which has been well studied and understood [2] and we will also show how the
corresponding bidiagonal decompositions are intricately related.
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On the total positivity of Gram
matrices of polynomial bases
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Abstract

Hilbert matrices Hn = (1/(i − j − 1))1≤i,j≤n+1 are Hankel matrices corre-
sponding to the moment sequence

sn =
1

n+ 1
=

∫ 1

0

xn dx

(cf. [4]). These matrices are strictly totally positive and can be seen as gram-
mian matrices of monomial polynomial bases with respect to the usual inner
product

⟨f, g⟩ :=
∫ 1

0

f(x)g(x) dx.

Bernstein mass matrices are grammian matrices of Bernstein bases with respect
to the above mentioned inner product (see [1], [5]). In [7], it is shown that
these matrices are also strictly totally positive. Bidiagonal factorizations to
Hilbert and Bernstein mass matrices are obtained in [6, 8] and [7], respectively,
providing matrix computations to high relative accuracy.

Bernstein bases are the polynomial bases most used in computer aided geo-
metric design due to their optimal shape preserving and stability properties (see
[2]). This good behaviour is related to the fact that Bernstein bases are nor-
malized B-bases (cf. [2, 3]) and then, any totally positive polynomial basis on a
compact interval can be written in terms of a Bersntein basis and a nonsigular
totally positive matrix.

Taking into account the previous facts, the total positivity of grammian ma-
trices of totally positive polynomial basis with respect to several inner products
will be analyzed. Furthermore, conditions to guarantee computations to high
relative accuracy with those matrices will be obtained. The numerical experi-
mentation will confirm the accuracy of the proposed procedures.
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Bidiagonal decomposition of rectangular
totally positive Lagrange-Vandermonde

matrices and applications
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Abstract

In this work we present an accurate and fast algorithm to compute the bidiag-
onal decomposition of rectangular totally positive Lagrange-Vandermonde ma-
trices, which are the generalization of rectangular Vandermonde matrices arising
when taking a Lagrange-type basis for the space of the algebraic polynomials of
degree less than or equal to n, instead of the monomial basis.

The algorithm is based on results on total positivity and Neville elimina-
tion, and the explicit expressions obtained for the determinants involved in the
process make it both fast and accurate.

Our algorithm has been applied to compute with high relative accuracy
the singular values and the Moore-Penrose inverse of rectangular Lagrange-
Vandermonde matrices, using also some of the algorithms of Koev [1, 2]. The
results of the numerical experiments, which illustrate the good behavior of the
proposed algorithm, are also included.
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Linear Algebra in Approximation
Theory: a new hope
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Abstract

In [5] the Lagrange polynomial basis is considered for polynomial interpo-
lation, and its good properties are remarked [2]. On the other hand, in [1]
algorithms related to totally positive matrices are presented. However, these
approaches (Lagrange basis and totally positive matrices) are only used in the
square case, i.e. in interpolation problems.

We propose to combine the Lagrange basis and totally positive matrices
in the rectangular case, i.e. to solve least squares problems, in the line of
work presented for the Bernstein basis in [4]. The aim of our work is to take
advantage of existing algorithms for totally positive matrices [3], in particular
for computing the QR factorization when solving the normal equations in least
squares problems.
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Tropical totally positive matrices
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Abstract

We investigate the tropical analogues of totally positive and totally nonneg-
ative matrices. These arise when considering the images by the nonarchimedean
valuation of the corresponding classes of matrices over a real nonarchimedean
valued field, like the field of real Puiseux series. We show that the nonar-
chimedean valuation sends the totally positive matrices precisely to the Monge
matrices. This leads to explicit polyhedral representations of the tropical ana-
logues of totally positive and totally nonnegative matrices. We also show that
tropical totally nonnegative matrices with a finite permanent can be factorized
in terms of elementary matrices. We finally determine the eigenvalues of tropi-
cal totally nonnegative matrices, and relate them with the eigenvalues of totally
nonnegative matrices over nonarchimedean fields.
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Some optimal properties related to
Total Positivity
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Abstract

Several optimal properties related to Total Positivity and totally positive
matrices will be commented. In particular, we shall deal with optimal properties
of the B-basis of a space of univariate functions U with a totally positive basis
(see [2]). The B-basis of U generates all totally positive bases of U by means
of totally positive matrices. A first example of B-basis is the Bernstein basis of
polynomials, which has optimal shape preserving propeties for curve design (see
[1]), property shared by the normalized B-bases [2]. Later, optimal stability
properties of many B-bases was also shown (see [3]). Optimal properties of
collocation matrices of B-bases can be found in [4] and these properties could
be extended to multivariate spaces (cf. [5]). This talk will present some new
contributions to this field.
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Abstract

An accurate and fast algorithm for computing the bidiagonal decomposi-
tion of rectangular totally positive collocation matrices of the Lupaş-type (p,q)-
analogue of the Bernstein basis is presented. These matrices are a generalization
of the Vandermonde matrices obtained when replacing the monomial basis by
a generalization of the Bernstein basis used in the area of CAGD: Lupaş-type
(p,q)-analogue of the Bernstein basis [2]. This bidiagonal decomposition, to-
gether with the algorithms in [1], allows us to solve in an accurate and efficient
way several numerical linear algebra problems for these matrices.
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matrices of the Lupaş-type (p,q)-analogue of the Bernstein basis, Linear
Algebra and its Applications, 651: 312–331 (2022) .





MSC20. 
Euclidean Jordan 

algebras and 
related systems

Muddappa Gowda





25th Conference of the International Linear Algebra Society (ILAS 2023)

Madrid, Spain, 12-16 June 2023	 585

Fan-Theobald-Von Neumann systems
Muddappa Gowda

Hadamard product and related inequalities in the Jordan spin algebra
Juyoung Jeong, Sangho Kum, Yongdo Lim

Jordan automorphisms and derivatives of symmetric cones
Michael Orlitzky

A Fiedler-type determinantal inequality in Euclidean Jordan algebras
David Sossa

On certain properties of the second order cone and some of its generalizations
Roman Sznajder





25th Conference of the International Linear Algebra Society (ILAS 2023)

Madrid, Spain, 12-16 June 2023	 587

Fan-Theobald-von Neumann systems
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Abstract

A Fan-Theobald-von Neumann system is a triple (V,W, λ), where V and W are
real inner product spaces and λ : V → W is a norm-preserving map satisfy-
ing a Fan-Theobald-von Neumann type inequality together with a condition for
equality. A simple example is (Hn,Rn, λ), where Hn is the space of n by n com-
plex Hermitian matrices and, for any X ∈ Hn, λ(X) is the vector of eigenvalues
of X written in the decreasing order. Other examples include the space of n by
n complex matrices (with λ denoting the singular value map), Euclidean Jor-
dan algebras, systems induced by certain hyperbolic polynomials, and normal
decomposition systems (Eaton triples). This talk is aimed at describing some
examples, basic properties, and the concepts of commutativity, automorphisms,
majorization, etc.
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Abstract

Due to its simple yet elegant structure, the study of an entry-wise product of
matrices, called the Hadamard product, has received extensive attention from
researchers and has expanded to various disciplines, including Euclidean Jordan
algebras. As an ongoing effort to extend this product to Euclidean Jordan
algebras, in this article, we propose a Hadamard product in the setting of Jordan
spin algebra, Ln, under the scheme of the Peirce decomposition, and show that
it preserves the diagonal structure of the elements in the algebra. It is shown
that this new product corresponds to the standard Hadamard product of 2× 2
symmetric matrices in the case of L3. Lastly, we prove that this novel product
satisfies an analog of the Schur product theorem as well as the inequalities of
Hadamard, Oppenheim, Fiedler, etc.
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Jordan automorphisms and derivatives
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Abstract

Hyperbolicity cones, and in particular symmetric cones, are of great interest
in optimization. Renegar showed that every hyperbolicity cone has a family of
“derivatives” that approximate it [3], and Ito and Lourenço recently character-
ized the automorphisms of the derivatives of symmetric cones [2]. Symmetric
cones famously correspond to Euclidean Jordan algebras [1], and we show that
the automorphisms of a symmetric cone’s derivatives are closely related to the
automorphisms of its associated Jordan algebra.
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A Fiedler-type determinantal inequality
in Euclidean Jordan algebras
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Abstract

The Fiedler’s determinantal inequality stated in [1] provides bounds for the
determinant of the sum of two Hermitian matrices. In this talk, we present an
extension of the Fiedler’s result to Euclidean Jordan algebras. In our proof,
we use the commutation principle for variational problems which were recently
introduced in these algebras. As an application, we obtain some Minkowski-type
determinantal inequalities in Euclidean Jordan algebras.
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Abstract 

 
We present two generalizations of the classical second-order cone (the Lorentz cone), namely 
the Extended Second Order Cone (ESOC) and the Monotone Extended Second Order Cone 
(MESOC). We will discuss the irreducibility, the dual cones, Laupunov rank, and related issues 
pertaining to ESOC and MESOC cones. The results on MESOC were obtained in collaboration 
with Yingchao Gao and Sándor Zoltán Németh. 
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Robust iterative solvers
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Abstract

Parallel implementations of Krylov subspace methods often help to accelerate
the procedure of finding an approximate solution of a linear system. However,
such parallelization coupled with asynchronous and out-of-order execution often
enlarge the non-associativity impact in floating-point operations. These prob-
lems are even amplified when communication-hiding pipelined algorithms are
used to improve the parallelization of Krylov subspace methods. Introducing
reproducibility in the implementations avoids these problems by getting more
robust and correct solutions. We propose a general framework [1] for deriving
robust (reproducible and accurate) variants of Krylov subspace methods. The
proposed algorithmic strategies are reinforced by programmability suggestions
to assure deterministic and accurate executions. The framework is illustrated
on the preconditioned BiCGStab method and its pipelined modification, which
in fact is a distinctive method from the Krylov subspace family.

Due to the energy consumption constraint for large-scale computing that
encourages the revision of the architecture design, scientists also review the
applications and the underlying algorithms organization. The main aim is to
make computing sustainable and apply the lagom principle (”not too much,
not too little, the right amount”), especially when it comes to working/ storage
precision. Thus, I will introduce an approach to address the issue of sustainable,
but still reliable, computations from the perspective of computer arithmetic
tools [2] and will present some preliminary results.
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Abstract

Mixed-precision algorithm is a challenging and advanced approach in the
recent numerical linear algebra. Focusing on the reduced precision such as fp16,
bfloat16, or special reduced precision matrix multiplier accumulator, these are
optimized for the computational speed and have a significant advantage on
energy efficiency for domain sciences.

The reduced precision arithmetic works on small-sized problems or successive
accuracy refinement by step-by-step precision up-casting. Batched-style eigen-
solver [1] with a reduced precision calculation is applied for the initial step of
Ogita-Aishima’s iterative refinement scheme [2]. It can accelerate the iterative
refinement using a ‘matrix-multiply arithmetic’ or similar accumulators to ac-
celerate major operations of matrix-matrix products. Mixing up with different
data formats and actual numerical arithmetic can be controlled by the idea of
our templated BLAS (tmBLAS) proposal [3]. For the larger dense matrix cases,
some extensions to the subspace problem and more advanced implementation
are done by Terao, Uchino, Ozaki, and so on (see the MS at ILAS23).

In the presentation of the Mini-symposium, we will demonstrate the compu-
tational behavior of the successively refined approach and preliminary perfor-
mance on the latest GPU systems.

Acknowledgements: This work was supported by a COE research grant in
computational science from the Hyogo prefecture and Kobe City through the
Foundation for Computational Science, also partially by Grant-in-Aid for Sci-
entific Research (B) No. 19H04127 from the JSPS.
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GEMM-based numerical algorithm for
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Abstract

Floating-point numbers and their arithmetic, typically in accordance with
IEEE 754 standard [1], are widely used in scientific computing owing to their
speed. However, rounding errors can be problematic when performing com-
putations with floating-point arithmetic. This presentation focuses on accurate
numerical algorithms for matrix multiplication [2]. For floating-point matrices A
and B, the original method [2] splits A and B into sum of p and q floating-point
matrices such that

A =

p
i=1

A(i), B =

q
j=1

B(j), p, q ∈ N,

|a(k)ij | ≥ |a(k+1)
ij | for |a(k)ij | ̸= 0, |b(ℓ)ij | ≥ |b(ℓ+1)

ij | for |b(ℓ)ij | ̸= 0.

For 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ q− 1, no rounding error occurs in the evaluation
of A(i)B(j). Let p = q, we have

AB =


i+j≤p

A(i)B(j) +

p
i=1

A(i)




p
j=p−i+1

B(j)


 , (1)

and it involves p(p− 1)/2 matrix multiplications.
Although [2], only discusses the case where p = q, we have recently discovered

that efficient algorithms for accurate matrix multiplication exist even when p ̸=
q. In this study, we primarily develop accurate algorithms with 4, 5, 8, and 9
matrix multiplications that are not expressed in the form 1. We demonstrate
that the computational cost and accuracy of the computed results are correlated
with the number of matrix multiplications used in the algorithm.

Acknowledgements: This work was supported by JSPS KAKENHI Grant
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Abstract

This study investigates iterative refinement algorithms for the eigenvalue
decomposition of a real symmetric matrix A ∈ Rn×n:

A = XDXT ,

where the ith columns of the orthgonal matrix X ∈ Rn×n are the eigenvectors
and the ith diagonal elements of the diagonal matrix D ∈ Rn are the eigenvalues
for i = 1, . . . , n. For the non-clustered eigenvalues, Ogita and Aishima proposed
the algorithm in the same manner as Newton’s method [1]. Building on their
work, we presented two mixed-precision algorithms: one involves 4n3 + O(n2)
to 6n3 +O(n2) highly accurate operations per iteration, and the other involves
2n3 +O(n2) highly accurate operations per iteration [2].

For the clustered eigenvalues, Ogita and Aishima proposed the algorithm ex-
tending their algorithm without clustered eigenvalues [3]. In this study, we pro-
pose an alternative algorithm based on our algorithm without clustered eigen-
values. Our proposed method offers advantages in terms of computational speed
comparable with Ogita and Aishima’s algorithm, as demonstrated through nu-
merical experiments.
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Abstract For the given signature operator H = Ir ⊕−In−r, a pseudo-Jacobi
matrix is a self-adjoint matrix relatively to a symmetric bilinear form ⟨·, ·⟩H,
and it is the counterpart of a classical Jacobi matrix to the indefinite scalar
product space setting. In this talk, we consider recent inverse eigenvalue

problems for this class of matrices. Namely, an n× n pseudo-Jacobi matrix is
constructed from a prescribed n-tuple of distinct real numbers and a Jacobi

matrix of order not less than ⌊n
2 ⌋, such that its spectrum is this tuple and the

given Jacobi matrix is its trailing principal submatrix. A divide-and-conquer
scheme is used to solve this problem, and a necessary and sufficient condition
under which the problem is solvable is presented. A numerical algorithm is
designed to solve this pseudo-Jacobi matrix inverse eigenvalue problem

according to the obtained results. Illustrative numerical examples are given to
test the reconstructive algorithm.

Acknowledgements: Work (partially) supported by the Centre for Mathemat-
ics of University of Coimbra (funded by the Portuguese Government through
FCT/MEC and by European RDF through Partership Agreement PT2020).
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Abstract
The Fourier neural operator has shown impressive capabilities to learn
parametric partial differential equations. It relies on the fast Fourier

transform, which imposes a strict requirement for equispaced data. In this
work, we propose a neural operator learning method utilizing a Vandermonde
structured matrix to act as a surrogate for the forward and backward of the

discrete Fourier transform on nonequispaced data while maintaining
quasi-linear operational complexity. Our results show that the proposed

Vandermonde neural operator surpasses the Fourier neural operator in speed,
while maintaining its accuracy. The simple structure makes this method ideal
for applying neural operator learning to the nonequispaced lattice, as well as

real-world data collected on a global scale.
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Abstract

The advent of 5G/6G cellular networking has greatly enhanced the capacity of
beamforming in Unmanned Aerial Systems (UAS) networking, enabling signifi-
cant advancements in industrial and residential applications.

In this talk, we explore the integration of beamforming and sensor arrays
to develop a mathematical model for routing a collection of Unmanned Au-
tonomous Aerial Systems (UAAS), or drone swarms, without the need for a base
station communication. Our proposed SWARM routing algorithm is based on
structured matrices, multi-beam beamforming, and sensor array concepts. The
precision and reliability of the model are discussed, and the bit-error rate is
analyzed based on the number of elements in the sensor arrays and the beam-
formed output of the swarm members. This is to ensure secure, decentralized
networking for the UAAS. Lastly, we introduce a low-cost routing algorithm to
navigate the UAAS collection.
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Abstract

In this talk we consider approaches to compute approximate solutions of
large scale, severely ill-conditioned linear systems that arise in many important
applications, such as machine learning and image reconstruction. We focus on
iterative methods, and consider implications of using low and mixed numerical
precisions in the computations. Special considerations, which normally do not
arise when solving well-conditioned problems, such as incorporating regulariza-
tion into the developed methods, need to be considered. We consider operator
approximation, iterative refinement exploiting mixed precision formats to ensure
sufficient accuracy, and preconditioning for Krylov subspace iterative methods.

Acknowledgements: Work (partially) supported by the US National Science
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and Static Matrix Problems
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Abstract

We present adapted Zhang Neural Networks (AZNN) in which the parameter settings
for the exponential decay constant η and the length of the start-up phase of basic ZNN
are adapted to the problem at hand. Specifically we study experiments with AZNN for
time-varying square matrix factorizations as a product of two time-varying symmetric
matrices and for the time-varying matrix square root problem.
Differing from generally used small η values and minimal length start-up phases in
ZNN, we adapt the basic ZNN method to work with large or even gigantic η settings
and arbitrary length start-up phases using the Euler low accuracy and unstable finite
difference formula. These adaptations improve the speed of AZNN’s convergence and
lower its solution error bounds for our chosen problems significantly to near machine
constant levels.
Parameter-varying AZNN also allows us to find full rank symmetrizers of static ma-
trices reliably, such as for the Kahan and Frank matrices, for matrices with highly
ill-conditioned eigenvalues and for matrices with complicated Jordan structures of di-
mensions from n = 2 on up where standard eigendata based symmetrizer algorithms
generally have failed. AZNN helps us to find full rank static matrix symmetrizers that
have never been successfully computed before.
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Abstract

Orthogonal polynomials are an important tool to approximate functions.
Orthogonal rational functions provide a powerful alternative if the function of
interest is not well approximated by polynomials. Polynomials orthogonal with
respect to certain discrete inner products can be constructed by applying the
Lanczos or Arnoldi iteration to appropriately chosen diagonal matrix and vector.
This can be viewed as a matrix version of the Stieltjes procedure. The gener-
ated nested orthonormal basis can be interpreted as a sequence of orthogonal
polynomials. The corresponding Hessenberg matrix, containing the recurrence
coefficients, also represents the sequence of orthogonal polynomials.

Alternatively, this Hessenberg matrix can be generated by an updating pro-
cedure. The goal of this procedure is to enforce Hessenberg structure onto a
matrix which shares its eigenvalues with the given diagonal matrix and the first
entries of its eigenvectors must correspond to the elements of the given vector.
Plane rotations are used to introduce the elements of the given vector one by one
and to enforce Hessenberg structure. The updating procedure is stable thanks
to the use of unitary similarity transformations. In this talk rational general-
izations of the Lanczos and Arnoldi iterations are discussed. These iterations
generate nested orthonormal bases which can be interpreted as a sequence of
orthogonal rational functions with prescribed poles. A matrix pencil of Hessen-
berg structure underlies these iterations. We show that this Hessenberg pencil
can also be used to represent the orthogonal rational function sequence and we
propose an updating procedure for this case. The proposed procedure applies
unitary similarity transformations and its numerical stability is illustrated.

Acknowledgements: The research was partially supported by the Research
Council KU Leuven (Belgium), project C16/21/002 (Manifactor: Factor Analy-
sis for Maps into Manifolds) and by the Fund for Scientific Research – Flanders
(Belgium), projects G0A9923N (Low rank tensor approximation techniques for
up- and downdating of massive online time series clustering) and G0B0123N
(Short recurrence relations for rational Krylov and orthogonal rational func-
tions inspired by modified moments).
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Legendre Pairs are combinatorial objects with a rich 20+ years history. Their
main application is that they furnish a structured form of the Hadamard con-
jecture and they have been studied by several authors. We bring into bear
a number of Linear Algebraic concepts and tools, in the context of Legendre
Pairs. This allows us to improve existing computational schemes to search ef-
ficiently for Legendre Pairs. Preliminary implementations indicate that using
custom-tailored FFT-type algorithms for computing the DFT of odd-length in-
put vectors clearly out-performs previous techniques used for this purpose.

Joint work with Dr. Shirani M. Perera, ERAU, Florida, United States.
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Rafał Bistroń, Tomasz Miller, Michał Eckstein, Shmuel Friedland, Karol yczkowski

Apolarity for border rank
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Abstract
The purpose of this talk is to give a linear algebra algorithm to find out if a
rank of a given tensor over a field F is at most k over the algebraic closure of
F , where k is a given positive integer. We estimate the arithmetic complexity
of our algorithm. This is based on a joint work with Shmuel Friedland [1].
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Abstract

Recently, the theory of quantum optimal transport has been developed in
connection with quantum information processing, see [1, 2, 3, 4, 5, 6], and their
references. This area of research aims to identify a suitable analogue of the
optimal transport problem or the Wasserstein distance [7] for density matrices
instead of probability distributions. Some authors have already look for the
applications of the quantum Wasserstein distance, for example by constructing
quantum Wasserstein Generative Adversarial Networks [8].

Currently, the most promising approach [5, 6, 8] involves identifying quantum
couplings ρAB of size N2 ×N2 for two N ×N density matrices ρA and ρB such
that TrAρ

AB = ρB and TrBρ
AB = ρA. The set of all such couplings is denoted

as ΓQ(ρA, ρB). The objective of the quantum optimal transport problem is to
minimize the quantum transport cost,

TQ(ρA, ρB) := min
ρAB∈ΓQ(ρA,ρB)

(
TrCQρAB

)
, (1)

for a suitable quantum cost matrix CQ. Analogically to the quantum transport
cost one can define [5, 6] the quantum Wasserstein (semi) distance of order two
as:

WQ(ρA, ρB) :=
√

min
ρAB∈ΓQ(ρA,ρB)

(
TrCQ2

ρAB
)
. (2)

In [5] it was shown that WQ is a semi-distance if and only if the quantum cost
matrix has the following form:

CQ =
∑
i<j

Eij |ψ−(ij)⟩⟨ψ−(ij)| ,

where |ψ−(ij)⟩ = 1√
2
(|ij⟩ − |ji⟩) and the coefficients Eij > 0 are called the cost

coefficients.
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In my talk I will focus on the quantum Wasserstein distance for pure states
with cost coefficients Eij = |Ei − Ej | encoding differences of energy levels in
some physical system, which we name quantum Wasserstein energy distance
WH . Note that for the pure states there exist only one coupling

ΓQ(ρA ⊗ ρB) = {ρA ⊗ ρB} .

Hence if ρA = |ψ⟩⟨ψ|, ρB = |ϕ⟩⟨ϕ|, the formula for Wasserstein energy distance
simplifies to:

WH(|ψ⟩, |ϕ⟩) =
√∑

i<j

(Ei − Ej)2|ψiϕj − ϕiψj |2

By choosing these specific cost coefficients, we not only incorporate the ”sys-
tem structure” into the system Hilbert space but also establish the triangle
inequality for WH , regardless of the dimension of Hilbert space or involved
Hamiltonian. Hence, if the spectrum of the used Hamiltonian is non degenerate
then WH is a true distance.

Moreover, I will present a tight upper and lower bound of the quantum
Wasserstein energy distance WH(|ψ⟩, |ϕ⟩) using Hamiltonian expectation values
and variances. Finally, we construct a quantum speed limit using the quan-
tum Wasserstein energy distance corresponding to evolution in the interaction
picture.
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Abstract

We introduce an elementary method to study the border rank of polynomials
and tensors, analogous to the apolarity lemma. This can be used to describe
the border rank of all cases uniformly, including those very special ones that
resisted a systematic approach. We also define a border rank version of the
variety of sums of powers and analyse its usefulness in studying tensors and
polynomials with large symmetries. In particular, it can be applied to provide
lower bounds for the border rank of some interesting tensors, such as the matrix
multiplication tensor.
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Abstract

In this talk I will discuss two aspects of quantum measurements, namely
sharpness and incompatibility, from a resource-theoretic perspective. Our con-
struction, based on various matrix preorders and Blackwell’s statistical com-
parison theorem, settles a debate in the literature and fills some gaps in the
mathematical and conceptual foundations of quantum theory.

Acknowledgements: Work (partially) supported by the MEXT Quantum
Leap Flagship Program (MEXT QLEAP) Grant No. JPMXS0120319794; the
MEXT-JSPS Grant-in-Aid for Transformative Research Areas (A) “Extreme
Universe” No. 21H05183, and from JSPS KAKENHI, Grants No. 20K03746
and No. 23XXXXXXX.

References

[1] F.B., E. Chitambar, W. Zhou, “A complete resource theory
of quantumincompatibility as quantum programmability”. Link:
https://arxiv.org/abs/1908.11274

[2] F.B., K. Kobayashi, S. Minagawa, A. Tosini, P. Perinotti, “Unifying differ-
ent notions of quantum incompatibility into a strict hierarchy of resource
theories of communication”. Link: https://arxiv.org/abs/2211.09226

[3] F.B., K. Kobayashi, S. Minagawa, “A complete and operational resource
theory of measurement sharpness”. Link: https://arxiv.org/abs/2303.07737



25th Conference of the International Linear Algebra Society (ILAS 2023)

622	 Madrid, Spain, 12-16 June 2023

Quantum Monge–Kantorovich problem
and transport distance between density

matrices

Sam Cole 1, Michal Eckstein 2, Shmuel Friedland 3,
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Abstract

The optimal transport problem, established by Monge and refined by Kan-
torovich and Wasserstein, is modern domain of mathematics [1] with ubiquitous
applications in physics, statistics and computer science. Recently, there is a
growing interest in a “quantum” version of the optimal transport, in which the
probability distributions are substituted by density matrices (see e.g. [2, 3, 4,
5, 6, 7, 8] and references therein).

The central idea is as follows: Let ρA and ρB be two N×N density matrices,
and consider a density matrix ρAB of size N2 such that both partial traces agree,
TrAρ

AB = ρB and TrBρ
AB = ρA. Such matrices, forming a set ΓQ(ρA, ρB), play

the role of quantum transport plans. The quantum optimal transport problem
seeks the minimal quantum transport cost,

TQ(ρA, ρB) := min
ρAB∈ΓQ(ρA,ρB)

(
TrCρAB

)
, (1)

for a suitable quantum cost matrix CQ.

In the talk I will provide an overview of the quantum optimal transport
problem basing on our recent works [8] and [9]. Therein we showed that the
quantum transport cost has some exceptional properties if the quantum cost
matrix is chosen to be the projector onto the antisymmetric subspace,

CQ := 1
2 (id− S) (2)

where S is the SWAP operator S(|x⟩ ⊗ |y⟩) = |y⟩ ⊗ |x⟩.
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Our key result is that the root of the quantum transport cost,
√
TQ, with

the cost matrix CQ, is a unitarily invariant distance on the space of 2×2 density
matrices. For N ≥ 3, and more general quantum cost matrices, we proved that√
TQ is a unitarily invariant semidistance, and we conjecture that it does satisfy

the triangle inequality in general.
For N = 2 the solution to (1) is equivalent to solving a 6th order polynomial

equation with roots on the unit circle. It leads to the conclusion that the
analogue of the p-Wasserstein distance, (TQ)1/p, is indeed a distance for p ≥
2, but the triangle inequality fails for p ∈ [1, 2). Moreover, closed formulas
are available in some specific cases: if the density matrices ρA and ρB are
(i) isospectral, or (ii) commute, or (iii) either of them is pure. Furthermore,
the quantum transport cost TQ is bounded from below by the rescaled Bures
distance and from above by the rescaled root infidelity.

Finally, I will briefly mention the possible applications of the quantum op-
timal transport in quantum information processing.
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Abstract

We discuss the optimal transport problem for d > 2 discrete measures. This
is a linear programming problem on d-tensors. It gives a way to compute a
“distance” between two sets of discrete measures. We introduce an entropic
regularization term, which gives rise to a scaling of tensors. We give a variation
of the celebrated Sinkhorn scaling algorithm. We show that this algorithm can
be viewed as a partial minimization algorithm of a strictly convex function. Un-
der appropriate conditions the rate of convergence is geometric, and we estimate
the rate.
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Abstract

We show that a class of geometric programs, consisting in minimizing the
maximum of finitely many log-Laplace transforms of nonnegative measures with
finite support, can be solved in polynomial time in the Turing model of computa-
tion. To do so, we establish explicit bit-size estimates for near minimizers. Then,
by exploiting variational formulations of the spectral radius of non-negative ten-
sors in terms of geometric programs [2], we deduce that the spectral radius of a
nonnegative tensor can be approximated within ε error in polynomial time, and
that the maximum of a nonnegative homogeneous d-form in the unit ball with
respect to d-Hölder norm can also be approximated in polynomial time. Rela-
tions of these results with entropy games [1], as well as alternative approaches
to compute the spectral radius, will also be discussed. This talk is based on [3].
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Abstract

A colloquial interpretation of entropy is that it is the knowledge gained
upon learning the outcome of a random experiment. Conditional entropy is
then interpreted as the knowledge gained upon learning the outcome of one
random experiment after learning the outcome of another, possibly statistically
dependent, random experiment. In the classical world, entropy and conditional
entropy take only non-negative values, consistent with the intuition that one
has regarding the aforementioned interpretations. However, for certain entan-
gled states, one obtains negative values when evaluating commonly accepted and
information-theoretically justified formulas for the quantum conditional entropy,
leading to the confounding conclusion that one can know less than nothing in
the quantum world. In this talk I will introduce a physically motivated frame-
work for defining quantum conditional entropy, based on two simple postulates
inspired by the second law of thermodynamics (non-decrease of entropy) and
extensivity of entropy, and I argue that all plausible definitions of quantum
conditional entropy should respect these two postulates. I will then prove that
all plausible quantum conditional entropies take on negative values for certain
entangled states, so that it is inevitable that one can know less than nothing in
the quantum world. All of my arguments are based on constructions of physical
processes that respect the first postulate, the one inspired by the second law
of thermodynamics. My talk is based on a joint work with Mark Wilde, Sarah
Brandsen, and Isabelle Jianing Geng, and is available in [1].
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Abstract

In the past twenty years, classical algebraic invariants like Cayley generalization
of the 2×2 determinant, i.e. the well known Cayley 2×2×2-Hyperdeterminant,
have been investigated in the quantum information litterature to help classify,
measure and distinguish classes of entanglement for multipartite pure quantum
states. In this talk, I’ll explain how projective duality can help finding such
algebraic invariants. In particular, I’ll show how one obtained with Luke Oeding
a polynomial invariant that generalize the 2× 2× 2× 2 Hyperdeterminant and
what is its interpretation in quantum information theory.

1
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31-011, Kraków, Poland
E-mail: tomasz.miller@uj.edu.pl

4 Center for Theoretical Physics, Polish Academy of Science, Warsaw, Poland
E-mail: karol.zyczkowski@uj.edu.pl

Abstract

Recently, in the context of developing a “quantum” extension of the optimal
transport theory of Monge, Kantorovich and Wasserstein, in [1] and [2] the
following conjecture was posed.

Let E = [Eij ] be any N -by-N distance matrix. On an N -dimensional Hilbert
space H with some fixed orthonormal basis {|i〉}, define the quantum cost matrix
CE ∈ B(H⊗H) via

CE := 1
2

∑
i<j

Eij(|ij〉 − |ji〉)(〈ij| − 〈ji|)

and consider the transport cost between two state vectors |ψ〉, |φ〉 ∈ H, ‖ψ‖ =
‖φ‖ = 1 given by

TE(|ψ〉, |φ〉) := 〈ψ ⊗ φ|CE |ψ ⊗ φ〉

In [2] it was proven that dE :=
√
TE is a semidistance, and it was conjectured

to be an actual distance, i.e. to satisfy the triangle inequality

dE(|ψ1〉, |ψ2〉) ≤ dE(|ψ1〉, |ψ3〉) + dE(|ψ3〉, |ψ2〉)

for all normalized state vectors |ψ1〉, |ψ2〉, |ψ3〉 ∈ H.
In my talk I will present some partial results of our joint work in progress on

this conjecture. More concretely, I will discuss the case when E is a Euclidean
distance matrix and the case when Eij ’s satisfy the stronger version of the
triangle inequality: Eij ≤ Ekl+Emn for any distinct {i, j}, {k, l}, {m,n} (where
of course i �= j, k �= l and m �= n).
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Abstract

Any pure state of four-partite quantum system ABCD, written |ψ〉 ∈ H⊗4
d ,

can be represented in a product basis by a 4–tensor, |ψ〉 =
∑d

ijk�=1 Tijk�|i, j, k, �〉.
Three flattenings of the tensor produce matricesX,Y, Z of order d2, which corre-
spond to three different partition of the system: AB|CD, AC|BD and AD|BC.
The state |ψ〉 is absolutely maximally entangled (AME), if it is maximally en-
tangled with respect to all three partitions, which is the case if X,Y, Z are
unitary, so all components of their Schmidt vectors are equal. This is equivalent
to the condition that the matrix X is 2-unitary, which means that its partial
transpose, Y = XΓ, and reshuffling, Z = XR, are also unitary.

Negative solution to the famous problem of 36 officers of Euler implies that
there are no two orthogonal Latin squares of order six. We show that the
problem has a solution, provided the ranks and units of the officers are allowed
to be entangled, and construct [1] orthogonal quantum Latin squares of order
d = 6. The solution can be represented by a 2-unitary matrix X = U36 ∈ U(36)
and implies existence of an AME state of four subsystems with six levels each
and a pure non-additive quhex quantum error detection code, which allows one
to encode a 6-level state into a triple of such states [2].
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Abstract

Let A(q) be a finite-dimensional nilpotent algebra over a finite field Fq with q
elements, and let G(q) = 1+A(q). On the other hand, let K denote the algebraic
closure of Fq, and let A = A(q)⊗Fq

K. Then, G = 1 + A is an algebraic group
over K equipped with an Fq-rational structure given by the usual Frobenius map
F : G → G, and G(q) can be regarded as the fixed point subgroup GF . For every
n ∈ N, the nth power Fn : G → G is also a Frobenius map, and GFn

identifies
naturally with G(qn) = 1 +A(qn) where A(qn) = A(q)⊗Fq

Fqn . The Frobenius
map restricts to a group automorphism F : G(qn) → G(qn), and hence it acts on
the set of irreducible characters of G(qn). Shintani descent provides a method to
compare F -invariant irreducible characters of G(qn) and irreducible characters
of G(q). It also provides a uniform way of studying supercharacters of G(qn)
for n ∈ N. These groups form an inductive system with respect to the inclusion
maps G(qm) ↪→ G(qn) whenever m | n, and this fact allows us to study all
supercharacter theories simultaneously, to establish connections between them,
and to relate them to the algebraic group G =

⋃
n∈N G(qn). Indeed, Shintani

descent permits the definition of a certain “superdual algebra” which encodes
information about the supercharacters of G(qn) for n ∈ N.
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Abstract

Over algebraically closed fields of characteristic zero, Heissenberg type alge-
bras, filiforms and finite-dimensional thin algebras are the only possible varieties
of algebras which appear as nilradicals of solvable Lie algebras in which the lat-
tice of ideals is a n-string [1]. All this algebras admit a positive natural grading
of Carnot type [3]. This graded pattern also follows for non-solvable Lie alge-
bras. Along this talk we will present some parametric families of Carnot graded
Lie algebras (firstly introduced as quasi-cyclic by Leger in [4]) that appear as
nilradical of mixed Lie algebras with chain ideal lattices. This talk is based on
the preprint [2].
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Abstract

Standardly stratified algebras are an axiomatic abstraction of concepts and
phenomena in Lie theory. The class of standardly stratified algebras includes
all quasi-hereditary algebras, so in particular, blocks of the Bernstein–Gelfand–
Gelfand category O of a complex semisimple Lie algebra, Schur algebras and
all algebras of global dimension at most 2. Exact Borel subalgebras of stan-
dardly stratified algebras are the counterpart of Borel subalgebras of complex
semisimple Lie algebras.

Not every standardly stratified algebra A has an exact Borel subalgebra.
However, a theorem by Koenig, Külshammer and Ovsienko ([5]), generalised by
Bautista, Pérez and Salmerón ([1]) and by Goto ([4]), states that there always
exists a standardly stratified algebra Morita equivalent to A that has an exact
Borel subalgebra. Such results establish the existence of exact Borel subalgebras
“up to equivalence”, but determining these subalgebras and their embeddings
into stratified algebras is a complex problem.

The aim of this talk is twofold. First, we shall see that exact Borel subal-
gebras and standardly stratified algebras containing them are unique in precise
circumstances ([6, 2]), and I will provide techniques to deduce information about
these algebras ([2]). Secondly, I will explain how the results presented are com-
patible with the recursive nature of standardly stratified algebras ([3]).
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Abstract

Let S be a finite dimensional algebra over a field k and let e be a non-
zero idempotent in S. Then Se = eSe has the structure of an algebra and the
block structures of S and of Se are related. If L(λ), λ ∈ Λ, is a labelling of the
simple S-modules then eL(λ), λ ∈ Λe is a labelling of the simple Se-modules,
where Λe = {λ ∈ Λ | eL(λ) �= 0} (see [3]). Viewing a block of S as a subset of
Λ and a block of Se as a subset of Λe we are interested in situations in which
for each block B of S the intersection B

⋂
Λe is a block of Se (or empty). The

classical case is that in which S is a Schur algebra S(n, r), with n ≥ r, and Se

is the group algebra of the symmetric group of degree r. In this case the blocks
(of S and of Se) are described by the so-called Nakayama Conjecture (long
since proved). We consider more generally situations in which this is true with
S a quasi-hereditary endomorphism algebra of a module X (over some finite
dimensional k-algebra) and Se is the endomorphism algebra of a summand of
X.
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Abstract

In this talk, I will discuss linear algebra techniques to study irreducible
representations of various quantum algebras at roots of unity. Our main example
will be quantum Schubert varieties in the quantum grassmannian. This is based
on joint work with Jason Bell, Samuel Lopes and Alexandra Rogers.

Acknowledgements: Work (partially) supported by NSERC grant RGPIN-
2022-02951 and EPSRC grant EP/R009279/1.
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Abstract

We study local Artinian Gorenstein (AG) algebras and consider the set of
Jordan types of elements of the maximal ideal, i.e. the partition giving the
Jordan blocks of the respective multiplication map.

In a joint work with Tony Iarrobino, we construct examples of families
Gor(T ) of local AG algebras with given Hilbert function T , and use obstructions
that the symmetric decomposition of the associated graded algebra of an AG
algebra A imposes on the Jordan type of A to study their irreducible compo-
nents. Together with Johanna Steinmeyer, we explore possible generalisations
of Jordan type and try to understand how they might apply to these topological
questions.

Acknowledgements: Work partially supported by FCT – Fundação para a
Ciência e a Tecnologia (UIDB/04674/2020)
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The graphs of reduced words of a
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Gonçalo Gutierres1, Ricardo Mamede1
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Abstract

Any permutation w of the symmetric group can be generated by a product
of adjacent transpositions. The products of minimal length for w are called
reduced words, and we can consider the graph G(w) whose vertices are reduced
words for w and whose edges are braid relations. We establish a statistic on
R(w), inducing a rank poset structure on the graph G(w). This statistic allows
to prove a conjecture made by Reiner and Roichman on bounds for the diameter
of G(w), and to compute the diameter of G(w) for certain permutations w. The
diameter for the associated graphs C(w) and B(w), obtained from G(w) by
contracting the commutations moves, or the long braid moves, respectively, are
also considered. We recover, as special cases, the diameter of the commutation
graph for the longest element of the symmetric group and the characterization
of fully commutative permutations obtained by S. Billey, W. Jockusch and R.
Stanley.

Acknowledgements: This work was partially supported by the Centre for
Mathematics of the University of Coimbra - UIDB/00324/2020, funded by the
Portuguese Government through FCT/MCTES
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U(h)-free modules and weight representations
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Abstract

Lie algebras and their representations appear throughout multiple areas of mathematics, and
the classification of simple modules is an important first step to understand the theory. Unfortu-
nately, a complete classification of simple modules for a Lie algebra g seems beyond reach: it is
complete only for the Lie algebra sl(2) (due the work of R.Block [1]). However, some classes of sim-
ple g-modules are well understood. For example, in the case of simple complex finite-dimensional
Lie algebras, irreducible representations with finite-dimensional weight spaces were classified due
to the efforts of S.Fernando [2] and the O. Mathieu [3].

Classes of non-weight modules have also been studied, such as Whittaker modules and Gelfand-
Zetlin modules. Recently such class has drawn attention in the community: the category of h-free
modules, i.e, of g-modules on which the Cartan subalgebra h acts freely. Still, the complete
classification of h-free modules of finite-rank seems to be a hard project and the only known case
is when the rank equals one ([4] and [5]).

Surprisingly, in spite of being of a completely opposite nature, weight modules and h-free
modules carry interesting connections. These connections are mostly obtained due to the weighting
functor W. As the name suggests, the functor W assigns to a h-free module M a weight module
W(M). And in fact the assignment is stronger: W(M) is a coherent family - a very large weight
module whose support coincides with whole h∗. Coherent families played a crucial role in Mathieu’s
breakthrough paper [3], where he obtains an algebraic construction, geometric realizations and a
complete classification of the semissimple irreducible ones. Therefore such relations hint that a
deeper study of coherent families and the weighting functor can bring important results for both
classes of representations.

Based on the PhD project of the speaker, this talk intends to illustrate interesting properties
of the weighing functor and its applications. In fact, by constructing and studying the left derived
functors of W, we are able to show that any simple infinite-dimensional g-module M that is
U(h)-finitely generated is U(h)-locally free in all maximal ideals of U(h), except for a finite set.
Moreover, we can see that W(M) is very close to being a coherent family, which inspires us to
define a generalization of coherent families that appears to have very similar properties to the
original ones.

Acknowledgements: Work supported by São Paulo Research Foundation (FAPESP), grants
#2020/14313-4 and #2022/05915-6
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Auslander-Reiten sequences
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Maŕıa José Souto Salorio4

1 2 3 Universidad Nacional de Mar del Plata, Argentina
4 Facultade de Informática, Universidade da Coruña, España

E-mail: maria.souto.salorio@udc.es

Let A be a finite dimensional algebra with finite global
dimension. In [6], we found a link between the category of
periodic complexes and the Happel’s root category using
the compression functor. Related to these ideas, in [3] and
[4] the authors described the almost split sequences for
periodic complexes, in the case that A is a hereditary

algebra. In this talk, we present some properties
concerning the compression functor of bounded complexes
over a more general context. In particular, we prove that
it preserves indecomposable complexes and irreducible
morphisms. The covering notion given in [1] and the

complexes of fixed size studied in [2] will play a relevant
role in our work.

Acknowledgements: Work (partially) supported by MICINN, PID2020-113230RB-
C21
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Completion of operator matrices with
application to solving operator
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Abstract

We will discuss certain problems on completions of different types of operator
matrices to the classes of Fredholm, Weyl, Browder and closed range operators.
Using these results we will give certain necessary and sufficient conditions for the
existence of a solution of certain operator equations that belong to mentioned
classes of operators. Also, we will discuss some reverse order law improvements
and applications in completion problems. In this talk we will answer an open
question of the existence of a positive solution of the operator equation AXB =
C without any additional range or regularity assumptions using two well-known
results of Douglas and Zoltán. Also we will give a general form of a positive
solution and consider some possible applications.
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Abstract

The solutions of the matrix polynomial equation p(X) = A over the complex
field are well understood. The case where the underlying field is the rationals
was studied by Drazin [1], who showed how to obtain exact rational solutions
by a certain linearization procedure. Robert Reams [2] investigated the special
case where p(x) = xm and m is odd, showing that the existence of a solution
is equivalent to a certain condition on the size of the Galois groups of f(x) and
f(p(x)), where f(x) is the irreducible characteristic polynomial of A. In this
talk we show how the action of the Galois group of f(x) on the roots of f(p(x))
“generates” the solutions obtained Drazin.
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Abstract

Linear operators appear in several forms in many different settings all across
mathematics. They can be ring elements (as in C∗-Algebras), but also (rectan-
gular) matrices, or, more generally, vector space and module homomorphisms.
In this talk, we present a recently developed framework for efficiently proving
statements about linear operators by verifying ideal membership of noncommu-
tative polynomials [2]. More precisely, any statement about operator identities
that can be phrased within first-order logic can be treated. Our main result
is a semi-decision procedure that allows to automatically proof operator state-
ments based on a single computation with noncommutative polynomials. The
resulting proof is valid in all of the settings mentioned above. We also illustrate
the framework by concrete examples, including recent work [1], and show how
computer algebra software can be used to automatise computations.

Acknowledgements: The first author was supported by the Austrian Science
Fund (FWF) grant P 32301. The second author was supported by the Austrian
Science Fund (FWF) grant P 31952.
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vana Milošević, Clemens G. Raab, and Georg Regensburger. Algebraic proof
methods for identities of matrices and operators: improvements of Hartwig’s
triple reverse order law. Applied Mathematics and Computation 409 (2021):
126357.

[2] Clemens Hofstadler, Clemens G. Raab, and Georg Regensburger. Uni-
versal truth of operator statements via ideal membership. arXiv preprint,
arXiv:2212.11662, 2023.



25th Conference of the International Linear Algebra Society (ILAS 2023)

654	 Madrid, Spain, 12-16 June 2023

Trace Minimization Principles
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Abstract

Various trace minimization principles have interplayed with numerical com-
putations for the standard eigenvalue and generalized eigenvalue problems in
general, as well as important applied eigenvalue problems including the lin-
ear response eigenvalue problem from electronic structure calculation and the
symplectic eigenvalue problem of positive definite matrices that play important
roles in classical Hamiltonian dynamics, quantum mechanics, and quantum in-
formation, among others. In this talk, we will review these trace minimization
principles and their most recent extensions that we have been working on.

Acknowledgements: Work (partially) supported by NSF grants DMS-1719620
and DMS-2009689.
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Abstract

In this talk, we consider the general η-(anti-)Hermitian solution to the
constrained Sylvester-type matrix equation over the generalized commutative
quaternions

n
s=1

EsXsFs = H,

s.t.




A1X1 = P1,
X1B1 = Q1,
A2X2 = P2,
X2B2 = Q2,

. . .
AnXn = Pn,
XnBn = Qn,

(1)

where As, Ps, Bs, Qs, Es, Fs and H are given matrices and Xs are unknowns.
We present some practical necessary and sufficient conditions for the ex-

istence of an η-(anti-)Hermitian solution to (1). We also provide the general
η-(anti-)Hermitian solution to the constrained matrix equation when it is solv-
able. Moreover, we present algorithms and numerical examples to illustrate the
results of this talk.
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Abstract In this talk, we discuss the singular value decomposition of a
commutative quaternion tensor under some product. As applications, we give
the expression of the Moore-Penrose inverse of a commutative quaternion

tensor as well as some properties. Finally. we investigate the general solutions
to some commutative quaternion tensor equations when they are consistent

and the least-square solutions.
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Abstract

We study plots of algebraic integers in the complex plane, so-called alge-
braic starscapes. Algebraic starscapes have a rich and collaborative history,
bringing together pure and computational mathematics with digital art. As we
explore the mysterious patterns lying in the images, we find deep relationships
between geometry and arithmetic. In this talk we will cover some history of
the visual geometry of algebraic starscapes, and then explore the effect of cre-
ating starscapes that emphasize points with fewer than the expected number of
symmetries, exhibiting previously hidden geometries. Finally, we will explain
how the resulting imagery informs and inspires research questions in algebraic
number theory.

Acknowledgements: This work was partially by NSF grant DMS-1439786,
which funded the ICERM semester entitled Illustrating Mathematics where
this project began. It was also supported by NSF grant DMS-1646385 while
Dorfsman-Hopkins was part of the Research Training Group in arithmetic ge-
ometry at the University of California, Berkeley.
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Abstract

A “linearization” of a matrix polynomial P (x) =
∑n

k=0 Ckx
k where each

coefficient Ck is a square matrix of dimension m by m is a pair of matrices A,
B usually of larger dimension, typically d = mn, for which several properties
hold including that detP (x) = det (xB −A). This means that the (general-
ized) eigenvalues of the linearization give us the (polynomial) eigenvalues of the
original matrix polynomial. Finding such polynomial eigenvalues is of interest
in several applications.

Recently we have introduced a new kind of linearization of matrix polyno-
mials, which we termed “algebraic linearizations” [1]. Our formulation is chiefly
useful for matrix polynomials that are or can be recursively constructed from
lower-degree matrix polynomials: h(x) = xa(x) · b(x) + c. In several instances
this results in linearizations with lower height, that is maximal absolute value
of any entry in the matrices. For matrices over the integers, for instance, this
has resulted in more numerically stable linearizations.

In this talk we report on some experimental results, and show that the usual
notion of pseudospectra of matrix polynomials needs to be extended and that
new theorems are needed.

This work is related to work done jointly with Laureano Gonzalez-Vega, J.
Rafael Sendra and Juana Sendra.

Acknowledgements: We acknowledge the support of Western University, The
National Science and Engineering Research Council of Canada, the University
of Alcalá, the Ontario Research Centre of Computer Algebra, and the Rotman
Institute of Philosophy. Part of this work was developed while RMC and EYSC
was visiting the University of Alcalá, in the frame of the project Giner de los
Rios and Mitacs Globalink Research Award, respectively.
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Abstract

“Doubly companion” matrices were introduced in a 1999 paper by Butcher
and Chartier in order to help analyze certain Runge–Kutta methods, and later
General Linear Methods, for numerically solving ordinary differential equations.
Doubly companion matrices are not studied outside of this application, so far
as I know, so this talk will include a discussion of their elementary properties.
For concreteness, here is a four-by-four doubly companion matrix:




−β1 −β2 −β3 −α4 − β4

1 0 0 −α3

0 1 0 −α2

0 0 1 −α1


 .

It was already known from the 1999 paper that if a(λ) = α4λ
4 +α3λ

3 +α2λ
2 +

α1λ+1 and b(λ) = λ4β4+λ3β3+λ2β2+λβ1+1, and c(λ) = a(λ)b(λ) truncated
to remove terms of degree 5 or higher, then the characteristic polynomial of this
example matrix is λ4c(1/λ), the reversal of c(λ). This construction works for
general dimension.

In this talk we explore doubly companion Bohemian matrices for various
populations for the coefficients αk and βk, and present several new puzzles.

Acknowledgements: Work partially supported by NSERC and by the Spanish
MICINN. This is joint work with many people, including some present at this
session.
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On the the eigenvalues of (Bohemian)
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Abstract

P -matrices are matrices all of whose principal minors are positive. Q-
matrices are matrices whose sums of principal minors of the same order are
all positive. A matrix is said to be a PM -matrix (resp. QM -matrix) if all its
powers are P -matrices (resp. Q-matrices). A matrix family is called Bohemian
if its entries come from a fixed finite discrete (and hence bounded) set, called
the population, usually of integers.

First, we will fully characterise Bohemian P -matrices with population {−1, 1}.
For size n, there are 2

n(n−1)
2 such matrices and we show how to construct a P -

matrix of size n+ 1 starting from a Bohemian P -matrices of size n.
Second, the study of the eigenvalues of these matrices (and some of its pow-

ers) brings in many cases open questions. For example we do not know if the
eigenvalues of a matrix A such that A and A2 are P -matrices necessarily have
positive real parts or if the eigenvalues of a PM -matrix are necessarily positive
(see [2, 3]). In order to get a complete answer to these questions we will fully
characterise the real QM -matrices up-to size 5 and we characterise those real
matrices A, 4× 4, such that A and A2 are Q-matrices but not all eigenvalues of
A have positive real parts.
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Abstract

This work explores the structure of the eigenvectors of Mandelbrot matri-
ces [1], a Bohemian family of matrices with binary entries. Their eigenvalues
are related to the periodic points of the Mandelbrot set, and can be computed
efficiently using Krylov subspace methods due to the availability and sparse-
ness of the LU decomposition of the residual pencil. The family of matrices are
constructed recursively, and can be related to and seen as block Kronecker lin-
earizations [2] of the underlying scalar Mandelbrot polynomials. Thus, the dual
minimal basis relations used to construct these linearizations can give significant
insight into the structure of the eigenvectors and can potentially be exploited
in computations.

References

[1] N. J. Calkin, E. Y. Chan, R. M. Corless, D. J. Jeffrey, and P. W. Lawrence. A
Fractal Eigenvector. The American Mathematical Monthly, 129(6): 503–523
(2022).

[2] F. M. Dopico, P. W. Lawrence, J. Pérez, and P. Van Dooren. Block Kro-
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Abstract

For real n × n matrices, we identify a co-Latin symmetry space, orthogonal to
the space of all n × n real matrices with constant row and column sum (semi-
magic), with respect to the Frobenius norm. The co-Latin and semi-magic
symmetry spaces form a superalgebra, yielding a unique decomposition over
these symmetry spaces for every real square matrix.

Explicit construction formula are established for the co-Latin matrices which
have at most rank 2, and can be expressed as the sum of the outer products of
two vector pairs. We outline how the assumed decompositions lead to the iden-
tification of a quadratic form obstruction to the classical problem of factorising
an integer matrix M as M = ZTZ, with Z an integer matrix.
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Abstract

Given an n × n matrix with integer entries in the range [−h, h], how close
can two of its distinct eigenvalues be?

Previous authors ([3, 4]) achieved a minimum gap of h−O(n). In this work,
we give an explicit construction of matrices with entries in [0, h] with two eigen-

values separated by at most h−n
2
/16+o(n2). Up to a constant in the exponent,

this agrees with the known lower bound of Ω((2
√
n)−n

2

h−n
2

) [1]. Bounds on
the minimum gap are relevant to the worst case analysis of algorithms for diag-
onalization and computing canonical forms of integer matrices (e.g. [2]).

In addition to our explicit construction, we show there are many matrices
with a slightly larger gap of roughly h−n

2
/32. We also construct 0-1 matrices

which have two eigenvalues separated by at most 2−n
2
/64+o(n2).
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Abstract

The spread of an square matrix with entries in C is defined as the maximum of
the distances among its eigenvalues. Different upper and lower bounds for the
spread can be found in the literature (see e.g. [3] or [4]).

Let Sn[a, b] denote the set of all n×n symmetric matrices with entries in the
real interval [a, b] and let Sn{a, b} be the subset of Sn[a, b] of Bohemian matrices
with population {a, b} (i.e. the entries of such a matrix are equal to a or b).

In [2], the following conjecture is proposed: for A ∈ Sn[a, b], the maximum
spread in this class is attained by some A ∈ Sn{a, b} with rank equal to 2. We
will show how interpreting this problem geometrically, via polynomial resultants
and symbolic computing, one can prove this conjecture for Sn[0, 1] when n ≤ 6
and for Sn[a, 1] when n ≤ 5 and a ∈ [−1, 1) which covers the general case for
Sn[a, b] (see [2]). In this way we improve the results in [1] where the previous
conjecture was proved only for S3[0, 1].
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Abstract

This talk is framed in the intersection area of Bohemian matrices and Gener-
alized inverses. Or maybe we should say, that is an attempt of the Bohemian
foray into the realm of generalized inverses. More precisely, for certain type of
structured {0, 1,−1}–matrices, we present a complete description of the inner
Bohemian inverses over any population containing the set {0, 1,−1}. In addi-
tion, when the population is exactly {0, 1,−1} we provide explicit formulas for
the number of inner Bohemian matrices of this type of matrices.
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[5] P. S. Stanimirović, R. Behera, J. K. Sahoo, D. Mosic, J. R. Sendra, J. Sendra,
A. Lastra. Computing tensor generalized inverses via specialization and ra-
tionalization. Revista de la Real Academia de Ciencias Exactas, F́ısicas y
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Abstract

Weight-equitable partitions of graphs, which are a natural extension of the
well-known equitable partitions, have been shown to be a powerful tool to
weaken the regularity assumption in several classic eigenvalue bounds. Weight-
equitable partitions assign to each vertex u ∈ V a weight that equals the cor-
responding entry νu of the Perron eigenvector ν. In this talk we will present
some new algebraic characterizations and two new applications: a condition
under which Hoffman’s ratio bound can be improved, and a new version of the
Expander Mixing Lemma for general graphs.
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Abstract

We investigate generalized inverses of several matrices associated to signed
graphs and their combinatorial interpretations. In particular, we focus on trees
and unbalanced unicyclic graphs.

This is a joint work with S. Mallik (Northern Arizona University, USA) and
A. Alazemi (Kuwait University, Kuwait).
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Abstract

In this talk we recall the spectral partitioning method based on a Fiedler
vector ([1]), i.e., an eigenvector corresponding to the second smallest eigenvalue
of the Laplacian matrix of a graph. This problem corresponds to the minimiza-
tion of a quadratic form associated with this matrix, under a certain constraint.
We introduce a similar problem using the �1-norm to measure distances and
compare the optimal solutions for both problems.

Acknowledgements: Work (partially) supported by Portuguese funds through
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plications, and the Portuguese Foundation for Science and Technology (FCT-
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Abstract

The approximate graph colouring problem (AGC) asks to find a d-colouring of a
graph that is promised to be c-colourable, for 3 ≤ c ≤ d. Though conjectured to
be NP-hard in 1976 [3], the complexity of AGC is still unknown. We show that
AGC is not solved by the strongest known algorithm for this type of computa-
tional problems, which is based on a blend of linear programming and Gaussian
elimination. To this end, we build a class of highly symmetric crystal tensors
whose structure is able to fool the algorithm. In order to design crystals, we use
multilinear algebra. In particular, we provide a combinatorial characterisation
for realisable systems of tensors; i.e., families of low-dimensional integral tensors
that can be realised as the projections of a single high-dimensional tensor.

This talk is based on the two papers [1, 2].
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Abstract

The n-Queens graph, Q(n), is the graph obtained from a n × n chessboard
where each of its n2 squares is a vertex and two vertices are adjacent if and only
if they are in the same row, column or diagonal.

Several combinatorial properties of n-Queens graph are known, such as its
clique number, vertex independence number, chromatic number and domination
number. However, as far as we know, there are no published results concerning
its spectral properties.

In this talk, we present the integer spectrum of Q(n), for n ≥ 4. We prove
that −4 is the least eigenvalue of Q(n) with multiplicity (n − 3)2 and n − 4 is
also an eigenvalue of Q(n) with multiplicity at least n+1

2 or n−2
2 when n is odd

or even, respectively. Furthermore, when n is odd, the integers −3,−2 . . . , n−11
2

and n−5
2 , . . . , n − 5 are additional integer eigenvalues of Q(n) and a family of

eigenvectors associated with them will be presented. Finally, conjectures about
the multiplicity of the aforementioned eigenvalues and about the non-existence
of any other integer eigenvalue will be stated.
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Abstract

Initially we recall the notion of alternating sign matrices (ASMs). Then we
introduce a generalization of ASMs called multiASMs and develop some of their
properties. Classes of multiASMs with specified row and column sum vectors R
and S extend the classes of (0, 1)-matrices with specified R and S. The special
case when R = S is a constant vector, in particular all 2’s, is treated in more
detail. We briefly discuss the polytope spanned by a class of multiASMs and a
Bruhat order on a class of multiASMs.
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Abstract

Consider a simple graph G and the class of symmetric matrices whose off
diagonal zero-nonzero pattern agrees with the adjacency matrix of G, but whose
diagonal is unrestricted. The inverse eigenvalue problem for graphs asks what
multisets of eigenvalues can occur for matrices in this class. This talk will discuss
a recent development, the invertible subtrees lemma which takes combinatorial
information about the graph and gives structural results on matrices achieving
certain kinds of high eigenvalue multiplicities. In particular, it is one of the nec-
essary ingredients to prove that there exist trees that have realizable unordered
multiplicity lists that can only be achieved by a unique list of eigenvalues (up
to shifting and scaling).
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Nasserasr, Polona Oblak, and Helena Šmigoc. Spectral arbitrariness for trees
fails spectacularly. https://doi.org/10.48550/arxiv.2301.11073, 2023.



25th Conference of the International Linear Algebra Society (ILAS 2023)

682	 Madrid, Spain, 12-16 June 2023

Multiplicative structures generated by
alternating sign matrices

Cian O’Brien1, Rachel Quinlan2

1 Department of Mathematics and Computer Studies, Mary Immaculate College, Limerick,
Ireland

E-mail: Cian.OBrien@mic.ul.ie
2 School of Mathematical and Statistical Sciences, University of Galway, Ireland

E-mail: rachel.quinlan@universityofgalway.ie

Abstract

An alternating sign matrix (ASM) is a square (0, 1,−1)-matrix in which the
row and column sums are all 1, and the non-zero entries alternate in sign through
each row and column. ASMs include permutation matrices, and generalize
permutation matrices in several precise and apparently distinct ways.

Unlike permutation matrices, ASMs may be singular. Also unlike permu-
tation matrices, nonsingular ASMs typically have infinite order in the general
linear group. Nevertheless, non-permutation ASMs of finite multiplicative or-
der do exist. This talk will present some constructions of such matrices, and
consider the question of how many distinct powers of a (non-permutation) ASM
may themselves be ASMs.
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Abstract

Several applications lead to problems involving data or solutions that can
be represented by tensors. Dealing with these multidimensional arrays is often
prohibitively expensive and some type of compression in data-sparse formats
has to be performed [1].

For this aim several low rank tensor factorizations have been proposed. In
this work, we focus on the Tucker decomposition.

We generalize to tensors the method in [2] providing a randomized algorithm
for the computation of the Tucker Decomposition: Multilinear Nyström method.

The accuracy of the approximation is close to the optimal truncated Higher
Order SVD; moreover from a complexity point of view is cheaper than existing
alternatives [3].

We discuss the advantages and disadvantages of imposing a Kronecker struc-
ture on the vectors chosen for the random sampling, and suggest good choices
for such vectors depending on the available representation for the initial tensor
data.
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Abstract

Matrices and tensors with nonnegative entries are common in scientific com-
puting and data analysis. Their low-rank approximations, however, often con-
tain negative elements, which can cause numerical instabilities (e.g., when solv-
ing kinetic equations) or make the object lose its physical meaning as a whole
(e.g., when it represents a probability distribution or a multispectral image).
In the framework of nonnegative matrix/tensor factorizations [1], one specifi-
cally chooses nonnegative low-rank factors. While this eliminates the problem
of negative entries, the nonnegative rank can be significantly larger than the
usual numerical rank.

A more flexible approach was proposed in [2], where the factors are allowed
to be arbitrary, but are optimized to make the low-rank matrix nonnegative.
This can be achieved with alternating projections [3]: starting from some low-
rank approximation of a nonnegative matrix, it is iteratively projected onto the
nonnegative orthant and the smooth manifold of low-rank matrices.

For matrices, the truncated singular value decomposition (SVD) gives the
exact projection in the Frobenius norm, but its cubic complexity makes the
iterations computationally demanding. To reduce the cost, one can turn to
faster inexact low-rank projections. In the tensor case, even the basic SVD-
based low-rank approximation algorithms are inherently inexact.

We will discuss the numerical and theoretical aspects of how inexact low-rank
projections affect the convergence of the alternating projections and reduce the
computational complexity of finding low-rank nonnegative matrix and tensor
approximations.

The talk is based on papers [4, 5], where we numerically study the alternating
projections based on randomized sketching for matrices and tensors in Tucker
and tensor train formats. We will also discuss some of the preliminary results of
the ongoing research related to the theoretical convergence guarantees of inexact
alternating projections and matrix/tensor cross approximations.
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Abstract

We propose a deep importance sampling method that is suitable in partic-
ular for estimating rare event probabilities in high-dimensional problems. We
approximate the optimal importance distribution in a general importance sam-
pling problem as the pushforward of a reference distribution under a composition
of order-preserving transformations, in which each transformation is formed by
a squared tensor-train decomposition of a ratio of unnormalized bridging density
functions, such as tempered or smoothed versions of the target density. The use
of composition of maps moving along a sequence of bridging densities alleviates
the difficulty of directly approximating a concentrated target density function.
To compute expectations over unnormalized probability distributions, we design
a ratio estimator that estimates the normalizing constant using a separate im-
portance distribution, again constructed via a composition of transformations
in tensor-train format. This offers better theoretical variance reduction com-
pared with self-normalized importance sampling, and thus opens the door to
efficient computation of rare event probabilities in Bayesian inference problems.
Numerical experiments on problems constrained by differential equations show
little to no increase in the computational complexity with the event probability
going to zero.
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Abstract

Low-rank tensor decompositions, based on techniques of numerical linear
algebra and optimization, realize adaptive low-parametric approximation for
PDE problems that are capable of dramatically reducing the complexity of nu-
merical solvers. One such a decomposition was proposed under the names of
matrix product states (MPS) in computational quantum physics [13, 12, 11] and
tensor train (TT) in computational mathematics [8, 7]. In particular, the multi-
level MPS-TT representation [6, 5], building on the classical idea of Kronecker-
product multilevel approximation [10, 9], allows to handle generic but extrav-
agantly large discretizations and leads to data-driven computations based on
effective discretizations adapted to the data instead of problem-dependent dis-
cretizations (approximation spaces) designed analytically. This approach has
been shown, both theoretically and experimentally, to efficiently approximate
functions with algebraic singularities [4] and highly-oscillatory solutions to mul-
tiscale diffusion problems [2, 3], achieving exponential convergence with respect
to the total number of representation parameters.

The adaptive multilevel MPS-TT representation is advantageous compared
to classical PDE discretizations when the number of levels employed (and hence
the number of factors in the tensor decomposition involved) is large. This
regime is associated with two notions of stability: not only the standard matrix
conditioning of the discretized differential operator but also the stability of long
(“deep”) tensor factorizations [1]. In this talk, we present recent results on
the use of the multilevel MPS-TT representation for the numerical solution
of elliptic and parabolic PDE problems. We present a low-rank tensor frame
representation, a generalization of the MSP-TT decomposition tailored for the
stable discretization and solution of PDEs, with a clutch of algorithms based on
matrix factorizations. The frame representation enables PDE solvers which are
stable for large numbers of levels in the sense of both matrix and representation
conditioning and, unlike the BPX-type preconditioner developed in [1], can be
used in practice for 2D [4] and 3D multiscale problems and also for parabolic
problems.
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Abstract

High-dimensional data in the form of tensors are challenging for kernel clas-
sification methods. To both reduce the computational complexity and extract
informative features, kernels based on low-rank tensor decompositions have been
proposed. However, what decisive features of the tensors are exploited by these
kernels is often unclear. In this talk, I would be presenting a proposed novel
kernel that is based on the Tucker decomposition. For this kernel the Tucker
factors are computed based on re-weighting of the Tucker matrices with tune-
able powers of singular values from the HOSVD decomposition. This provides
a mechanism to balance the contribution of the Tucker core and factors of the
data. I benchmark support tensor machines with this kernel on several datasets.
Firstly, I consider synthetic data where two classes differ in either Tucker factors
or core. Then I compare our novel and certain existing kernels on real-world
datasets. I show robustness of the new kernel with respect to both classification
scenarios. The proposed kernel has demonstrated a higher test accuracy than
the state-of-the-art tensor train multi-way multi-level kernel, and a significantly
lower computational time.
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Abstract

The following hypothesis was put forward by Goreinov, Tyrtyshnikov and
Zamarashkin in [1].

For arbitrary semi-orthogonal n× k matrix a sufficiently ”good” k × k sub-
matrix exists. ”Good” in the sense of having a bounded spectral norm of its
inverse. The hypothesis says that for arbitrary k = 1, . . . , n−1 the sharp upper
bound is

√
n.

Supported by numerical experiments, the problem remains open for all non-
trivial cases (1 < k < n − 1). During the talk, we will give the proof for the
simplest of them (n = 4, k = 2) and discuss some observations about the general
case.

Acknowledgements: I want to thank the authors of the original paper for
fruitful discussions.
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Abstract

We use tensor cross interpolation algorithm to obtain high order perturba-
tive diagrammatic expansions for the quantum many-body problem at very high
precision. The approach is based on a tensor train representation of the sum of
all Feynman diagrams. This representation is an effective separation of variables
and therefore enables a direct calculation of the high dimensional integrals. It
also yields to the full real time evolution of physical quantities in the presence
of any time-dependent interaction. Our benchmarks on Anderson-like quantum
impurity problems demonstrate that this technique supersedes diagrammatic
Quantum Monte Carlo by orders of magnitude in precision and speed, with
convergence rates 1/N2 or faster, where N is the number of function evalua-
tions. The method also works in parameter regimes characterized by strongly
oscillatory integrals in high dimension, which suffer from a catastrophic sign
problem in Quantum Monte-Carlo.
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2020 research and innovation programme under Grant agreement No. 862683
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Abstract

We will display two approaches in order to approximatively solve Bolza
type finite horizon optimal control problems. The first approach is to solve
the associated Bellman equation numerically by employing the Policy Iteration
algorithm. In a second approach, we will introduce a semiglobal optimal con-
trol problem and use open loop methods arising from a Pontryagin maximum
principle on a feedback level. To overcome computational infeasability we use
low rank hierarchical tensor product approximation/tree-based tensor formats,
in particular tensor trains (TT tensors) and multi-polynomials, together with
high-dimensional quadrature, e.g. Monte-Carlo. By controlling a destabilized
version of viscous Burgers and a diffusion equation with unstable reaction term
numerical evidence is given.
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Abstract

In the past few years, applied mathematicians started looking at the forward
propagation step of deep learning techniques in terms of discretization methods,
e.g., forward Euler, applied to an unknown, underlying differential operator.
Each layer of the network is seen as a time step of the discretization method [1,
2]. This point of view paved the way for so-called neural ordinary differential
equations (ODE) [3, 4]. In the latter framework, the deep learning process is
modeled by an ODE: Inputs are translated into initial values whereas outputs
are viewed as the ODE solution evaluated at the final time step. Information
propagates along the ODE flow in place of the net so that the extremely problem-
dependent design of the latter is no longer needed. The training phase is now
employed to learn the parameters definining the neural ODE. In this talk we
present a novel tensor-based neural ODE, namely an ODE defined by tensors,
to model a deep learning process. Preliminary results on classification problems
show the potential of such new tool.
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Abstract

Hamilton-Jacobi-Bellman (HJB) equation plays a central role in optimal
control and differential games, enabling the computation of robust controls in
feedback form. The main disadvantage for this approach depends on the so-
called curse of dimensionality, since the HJB equation and the dynamical sys-
tem live in the same, possibly high dimensional, space. In this talk I will con-
sider feedback boundary optimal control problems arising from fluid dynamics
and their reduction by the means of a Statistical Proper Orthogonal Decom-
position (SPOD) method. The Proper Orthogonal Decomposition (POD) is a
well-known technique in the Model Order Reduction community used to reduce
the complexity of intensive simulations. The SPOD approach is characterized
by the introduction of stochastic terms in the model (e.g. in the initial condi-
tion or in the boundary conditions) to enrich the knowledge of the Full Order
Model, useful for the definition of a more reliable controlled reduced dynamics.
In the offline stage of the method we consider different realizations of the artifi-
cial random variables and we compute the corresponding optimal trajectory via
the Pontryagin Maximum Principle (PMP), which will form our snapshots set.
Afterwards, we construct the reduced basis and we consider the corresponding
reduced dynamical system. At this point the HJB can be solved in a reduced
domain through the application of a data-driven Tensor Train Gradient Cross
[2] based on samples derived by either PMP or the State-Dependent Riccati
Equation. Finally, I will show its effectiveness on the optimal control of the
incompressible Navier-Stokes equation in a backward step domain.
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Epidemiological modelling is crucial to inform healthcare
policies and to support decision making for disease
prevention and control. The recent outbreak of

COVID-19 pandemic raised a significant scientific and
public debate regarding the quality of the mathematical
models used to predict the effect of the pandemics and to
choose an appropriate response strategy. To accurately

capture how the disease spreads, we have to move beyond
a usual assumption that the population is connected
homogeneously (well–mixed), and towards network

models of epidemics. Unfortunately, their complexity
grows exponentially with the size of the network — these
models suffer from the curse of dimensionality and usually
rely on further approximations to make them practically

solvable. In this talk we discuss how epidemiological
models on networks can be solved accurately using the
recently proposed algorithms based on low–rank tensor

product factorisations. We also discuss the inverse
problem of inferring a contact network from

epidemiological data, for which we employ Bayesian
optimisation techniques.

This is joint work with Sergey Dolgov (University of
Bath, UK).
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Abstract

X-ray spectromicroscopy is a powerful tool for studying material distribu-
tions, which is extracted from the data using a combination of PCA and cluster
analysis. However, the traditional data collection setting has some significant
weaknesses (e.g. long scanning times and material degradation due to x-ray
radiation).

In this talk, we present a novel approach for undersampling, reconstruct-
ing, and analysing X-ray spectromicroscopic measurements based on low-rank
matrix completion. The new method allows the selection of robust sampling
pattern, matrix rank and undersampling ratio, while minimising the impact of
undersampling on the cluster analysis. Results obtained on real data will be
illustrated.
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Abstract

In this talk, we will present a method for computing asymptotic formulas and
approximations for the volumes of spectrahedra, based on the maximum-entropy
principle from statistical physics. The method gives an approximate volume for-
mula based on a single convex optimization problem of minimizing − log detP
over the spectrahedron. Spectrahedra can be described as affine slices of the
convex cone of positive semi-deÞnite (PSD) matrices, and the method yields effi-
cient deterministic approximation algorithms and asymptotic formulas whenever
the number of affine constraints is sufficiently dominated by the dimension of
the PSD cone.

Our approach is inspired by the work of Barvinok and Hartigan [1] who used
an analogous framework for approximately computing volumes of polytopes.
Spectrahedra, however, possess a remarkable feature not shared by polytopes, a
new fact that we also prove: central sections of the set of density matrices (the
quantum version of the simplex) all have asymptotically the same volume. This
allows for very general approximation algorithms, which apply to large classes
of naturally occurring spectrahedra.

Acknowledgements: The Þrst author is supported by the ERC under the Eu-
ropean’s Horizon 2020 research and innovation programme (grant 787840). The
second author was partially supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy -
The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID:
390685689). The third author would like to thank the Institute of Mathemat-
ical Sciences, Chennai, for hosting him in Spring 2022, when part of this work
was done. He also gratefully acknowledges Þnancial support from the Bogazici
University Solidarity fund.
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Abstract

The difference-of-convex (DC) algorithm is a conceptually simple method for
the minimization of (non)convex functions that are expressed as the difference
of two convex functions. The DC algorithm can be reinterpreted as the Breg-
man proximal point algorithm. This viewpoint allows for the straightforward
derivation of convergence guarantees for the DC algorithm. We present several
conditions that ensure a linear convergence rate, namely a new DC Polyak-
�Lojasiewicz condition, as well as a relative strong convexity assumption which
does not require smoothness. In the second part of the talk, we will consider
an application in quantum statistical mechanics. We will discuss a simple first-
order algorithm for computing the convex conjugate and proximal operator of
the conditional entropy of a bipartite quantum system.
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Abstract

A spectrahedron is, by definition, the solution set of a linear matrix inequality.
Spectrahedra are precisely the feasible sets of semidefinite programming, and
thus deciding whether a set is a spectrahedron is a relevant problem for opti-
mization. It is also interesting and important to classify the different possible
linear matrix inequalities defining a given spectrahedron. In this talk we ex-
plain how properties of abstract operator systems help classifying linear matrix
inequality definitions of sets. Our main focus is on polyhedral cones, the 3-
dimensional Lorentz cone, where we can completely describe all defining linear
matrix inequalities, and on the cone of positive semidefinite matrices.
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Abstract

We derive and analyze an infinite-dimensional semidefinite program which
computes least distortion embeddings of flat tori Rn/L, where L is an n-dimensional
lattice, into Hilbert spaces.

This enables us to provide a constant factor improvement over the previously
best lower bound on the minimal distortion of an embedding of an n-dimensional
flat torus.

As further applications we prove that every n-dimensional flat torus has a
finite dimensional least distortion embedding, that the standard embedding of
the standard tours is optimal, and we determine least distortion embeddings of
all 2-dimensional flat tori.

Acknowledgements: This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie agreement No 764759. F.V. is partially supported by the
SFB/TRR 191 ”Symplectic Structures in Geometry, Algebra and Dynamics”,
F.V. and M.C.Z. are partially supported ”Spectral bounds in extremal discrete
geometry” (project number 414898050), both funded by the DFG. A.H. is par-
tially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - Cluster of Excellence Mat-
ter and Light for Quantum Computing (ML4Q) EXC 2004/1 - 390534769.
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Abstract

We discuss an algorithm to compute the inverse of quasi-definite matrices
with low-rank diagonal blocks. This employs principal pivot transforms (PPTs)
to derive a new, backward stable variant of symmetric Gauß-Jordan elimination.
Employing this in the Newton iteration for computing the matrix sign function
of a 2n × 2n Hamiltonian matrix (which is quasi-definite after multiplication

by J =

[
0 In

−In 0

]
) allows to keep the off-diagonal blocks in low-rank form

without re-factoring them as needed in previous attempts to preserve the low-
rank structure explicitly. This inversion method then can be used to derive a
novel low-rank solver for algebraic Riccati equations based on the sign function
method. The new method is superior to previous sign function-based methods
with respect to the number of floating point operations as well as numerical
accuracy, as demonstrated by several numerical examples.
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Abstract

We are interested in solutions to parameterized linear systems of the form

A(µ1, µ2)x(µ1, µ2) = b, (1)

for (µ1, µ2) ∈ R2, where A(µ1, µ2) ∈ Rn×n nonsingular with a nonlinear de-
pendence on the parameters, x(µ1, µ2) ∈ Rn, and b ∈ Rn. This work combines
companion linearization with the Krylov subspace method preconditioned BiCG
and a decomposition of a tensor matrix of precomputed snapshots. A reduced
order model of x(µ1, µ2) is constructed, which can be evaluated in a cheap way
for many values of the parameters.

Previously proposed methods require sampling, e.g., the computation of a
finite element solution for each snapshot in the tensor matrix, which this method
avoids. Specifically, the snapshots are generated as in [1], where one parameter
is frozen at a time, and the method returns solutions to (1) as a one variable
function of the other parameter. The decomposition is performed using the
procedure presented in [2], resulting a rank m approximation of the form

xm(µ1, µ2) =
m∑

k=1

ΦkF k
1 (µ1)F

k
2 (µ2) ≈ x(µ1, µ2), (2)

where Φk ∈ Rn, F k
1 : R → R, and F k

2 : R → R. An interpolation of the functions
F k
1 , F

k
2 in (2) is used to produce approximations to (1) outside of the snapshots.
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Abstract

We consider the use of mixed precision to solve the Sylvester matrix equa-
tion AX +XB = C. When only one level of precision is available, the method
of choice is the one developed by Bartels and Stewart [1]. Their algorithm con-
sists of three steps: first, we compute the Schur decompositions A =: UATAU

∗
A

and B =: UBTBU
∗
B , where UA and UB are unitary and TA and TB are up-

per quasi-triangular; then, we use a substitution algorithm to solve for Y the
quasi-triangular equation TAY + Y TB = U∗

ACUB ; and finally, we compute the
solution as X := UAY U∗

B .
How can we improve the performance of this method when, in addition to

the current working precision, a lower-precision arithmetic is also available?
An effective way to achieve this is to reduce the precision used to carry out
the most expensive step of the algorithm, which is the initial computation of
the two Schur decompositions. The use of low precision introduces a loss of
accuracy, and we need to adapt the subsequent stages of the algorithm to make
up for it. First, we replace the substitution algorithm that solves the quasi-
triangular equation with an iterative refinement scheme that runs in working
precision but only uses the low-precision Schur factors of A and B. But the
Bartels–Stewart algorithm hinges on UA and UB being unitary, and if the Schur
decompositions are computed using low precision, then recovering X as UAY U∗

B

will cause all accuracy to be lost. We propose two inexpensive solutions that
overcome this issue: one is based on the inversion of UA and UB , the other on
their re-orthonormalization, and they both rely on working-precision arithmetic.

In our numerical experiments, the new methods are as accurate as the
Bartels–Stewart algorithm run in working precision, but they can be faster if the
low-precision arithmetic is sufficiently cheaper than the working-precision one.

References

[1] R. H. Bartels, G. W. Stewart. Algorithm 432: Solution of the matrix equa-
tion AX +XB = C, Comm. ACM, 15: 820–826 (1972).



25th Conference of the International Linear Algebra Society (ILAS 2023)

718	 Madrid, Spain, 12-16 June 2023
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Abstract

Finding the unique stabilizing solution X = XH of large-scale continuous-
time algebraic Riccati equations (CAREs) 0 = R(X) := AHX +XA+ CHC −
XBBHX with a large, sparse matrix A ∈ Cn×n, and matrices B ∈ Cn×m and
C ∈ Cp×n is of interest in a number of applications. Here, B and CH are
assumed to have full column and row rank, resp., with m, p � n. The unique
stabilizing solution X = XH is positive semidefinite and makes the closed-loop
matrix A − BBHX stable. Even so A is large and sparse, the solution X will
still be a dense matrix in general. But our assumptions on B and C often imply
that the sought-after solution X will have a low numerical rank (that is, its rank
is � n). This allows for the construction of iterative methods that approximate
X with a series of low rank matrices stored in low-rank factored form.

To be precise, we focus on Hermitian low-rank approximations Xj to X
of the form Xj = ZjYjZ

H
j , where Zj ∈ Cn×kj is a matrix with only few

columns and Yj ∈ Ckj×kj is a small square Hermitian matrix. There are several
methods which produce such a low-rank approximation (e.g., rational Krylov
subspace methdos, low-rank Newton-Kleinman methods and Newton-ADI-type
methods), see, e.g., [4] for an overview. In particular, [3, Theorem 2] states
that the approximation Xcay

j of the Riccati solution obtained by the Cayley

transformed Hamiltonian subspace iteration [5] and the approximation Xqadi
j

obtained by the qADI iteration [6, 7] are equal to the approximation Xradi
j

obtained by the RADI method [3]

Xradi
j = Xcay

j = Xqadi
j

(if the initial approximation in all algorithms is zero and the same shifts are
used). Beyond that, if rank C = 1 and the shifts are chosen in a specific way,

Xradi
j = Xcay

j = Xqadi
j = X inv

j

where X inv
j is the approximation obtained by the invariant subspace approach

[1]. Parts of these connections have already been described in [2, 5].
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Our approach is based on a block rational Arnoldi decomposition and an
associated block rational Krylov subspace spanned by AH and CH . The ap-
proximations Xj as well as ‖R(Xj)‖F can be computed fast and efficiently. In
particular, our approach gives a whole new family of algorithmic descriptions
of the same approximation sequence Xj to the Riccati solution as four above
mentioned algorithms for CARE, that is,

Xj = Xradi
j = Xcay

j = Xqadi
j .

We will suggest a new algorithm which allows for a computationally slightly
more efficient way to compute Xj than the other four algorithms. The focus of
the talk will be on the theoretic background of the family of algorithms rather
than on a comparison with other known algorithms.
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Abstract

The solution of the Nonsymmetric algebraic ⊤-Riccati equation (⊤-NARE)

X⊤BX −X⊤A−DX − C = 0, (1)

where X is the unknown matrix and A,B,C,D ∈ Rn×n are coefficients can be
related to the computation of certain deflating subspaces of the ⊤-palindromic
matrix pencil

φ(z) = M + zM⊤, M =

[
C D
A −B

]
, (2)

where the superscript ⊤ denotes transposition.
In particular, if φ(z) is regular and X is a solution of (1) then the columns of

[ I
X ] span a deflating subspace of φ(z) and a kind of converse result holds. This
relation has been exploited to develop ⊤-NARE solvers based on efficient algo-
rithms for computing deflating subspaces of a pencil, such as the (palindromic)
QZ algorithm and Doubling Algorithms [1].

By further exploiting this relation, we develop some theoretical and compu-
tational results.

On the theoretical side, we describe both necessary and sufficient conditions
for the existence of solutions expressed in terms of the matrix coefficients and
we provide conditions under which the pencil φ(z) has no eigenvalues on the
unit circle. These results are very similar to the well-known conditions for the
existence of solution and the absence of critical eigenvalues in the celebrated
continuous-time algebraic Riccati equations [2].

On the computational side, since the palindromic QZ algorithm of [1] requires
a swapping of eigenvalues in the antitriangular form of the pencil φ(z) to get
the required deflating subspace, we update the swapping strategy reducing the
cost from O(n4) to O(n3) arithmetic operations in the worst case. Moreover,
we provide new algorithms based in quadraticizations of the pencil φ(z), with
the subsequent application of the Cyclic Reduction algorithm in two different
ways and a new algorithm based on a contour integral representation of the
orthogonal projection on the required deflating subspace of φ(z).
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Abstract

The low-rank ADI iteration is an often used algorithm to compute low-
rank solution approximations for large-scale matrix equations such as algebraic
Riccati, Lyapunov, and Sylvester equations. In every step of this iteration,
a large-scale linear system of equations has to be solved which is the most
expensive part of the whole process. For Lyapunov equations,

AX +XAT + ffT = 0,

we recently presented in [1] accuracy criteria for the arising linear systems in
the low-rank Lyapunov ADI iterations.
Here, we look at Sylvester equations

AX +XB + fgT = 0

and the associated low-rank ADI for Sylvester equations [2], [3]. There, a pair
of two different large-scale linear systems

(A+ βkIn)vk = sk−1 (B + αkIm)Twk = tk−1, k ≥ 1

has to be solved in every step for vk, wk. We investigate the situation when
those inner linear systems are solved inexactly by an iterative methods such as,
e.g., preconditioned Krylov subspace methods. We present estimates for the
required accuracies regarding the inner linear systems which dictate when the
employed inner Krylov subspace methods can be safely terminated. The goal is
to save some computational effort without endangering the functionality of the
low-rank Sylvester-ADI method. Ideally, the inexact ADI method mimics the
convergence behavior of the more expensive exact ADI method.
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Abstract

Block Krylov subspace methods (KSMs) comprise build-
ing blocks in many state-of-the-art solvers for large-scale
matrix equations as they arise, for example, from the dis-
cretization of partial differential equations. While extended
and rational block Krylov subspace methods provide a ma-
jor reduction in iteration counts over polynomial block KSMs,
they also require reliable solvers for the coefficient matrices,
and these solvers are often iterative methods themselves.
It is not hard to devise scenarios in which the available
memory, and consequently the dimension of the Krylov
subspace, is limited. In such scenarios for linear systems
and eigenvalue problems, restarting is a well-explored tech-
nique for mitigating memory constraints. In this work, such
restarting techniques are applied to polynomial KSMs for
matrix equations with a compression step to control the
growing rank of the residual. An error analysis is also per-
formed, leading to heuristics for dynamically adjusting the
basis size in each restart cycle. A panel of numerical exper-
iments demonstrates the effectiveness of the new method
with respect to extended block KSMs.
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Abstract

In this talk we consider the problem of computing two different kinds of
integrals :

∫ bi

ai

f(x)wi(x)dx, i = 1, 2,

i wi(x) ai bi
1 e−x2

0 ∞

2 e
−x2− 1

x2 −∞ ∞
(1)

where w1(x) and w2(x) are the Hermite and Pollaczek–type weights, respectively
[4, 5].

Although w1(x) and w2(x) are both positive weights, the associated system
of orthogonal polynomials is not known [3, 4, 5]. Therefore, it is not possible
to compute the nodes and weights of the corresponding Gaussian rules in the
standard way [3].

Usually, two possible approaches are considered for computing an approxi-
mation of (1) :

computing the Gaussian quadrature rule associated to the weight wi(x), i =
1, 2, via the modified Chebyshev algorithm [3];

approximating (1) by a product quadrature rule [1, 3].

In both cases, it is needed to compute the modified moments :

M(i)
ℓ =

∫ bi

ai

p̃ℓ(x)wi(x)dx, ℓ = 0, 1, 2, . . . , i = 1, 2,

where p̃ℓ(x), ℓ = 0, 1, 2, . . . , is a system of orthonormal polynomials with respect
to another positive weight w̃(x) in a interval [ã, b̃], satisfying a known three–
term recurrence relation.
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In case i = 1, i.e., the half–range Hermite weight, we consider the system of
orthonormal Laguerre polynomials {Lℓ(x)}∞j=0 as {p̃ℓ(x)}∞ℓ=0. A system of two
recurrence relations can be derived

M(1)
0 =

√
π

2
, N (1)

0 =
1

2
,

M(1)
1 = −1

2
+

√
π

2
, N (1)

1 =
1

2
−

√
π

4
,

ℓM(1)
ℓ = (2ℓ− 1)M(1)

ℓ−1 −N (1)
ℓ−1 − (ℓ− 1)M(1)

ℓ−2, ℓ ≥ 2,

ℓN (1)
ℓ = − ℓ

2
M(1)

ℓ−1 +
ℓ− 1

2
M(1)

ℓ−2 + (2ℓ− 1)N (1)
ℓ−1 − (ℓ− 1)N (1)

ℓ−2,

with

M(1)
ℓ =

∫ ∞

0

Lℓ(x)e
−x2

dx, N (1)
ℓ =

∫ ∞

0

xLℓ(x)e
−x2

dx, ℓ, 0, 1, . . .

In exact arithmetic, the sequences
{
M(1)

ℓ

}∞

ℓ=0
and

{
N (1)

ℓ

}∞

ℓ=0
go to zero for

ℓ → ∞ [2, 6]. Unfortunately, their straightforward implementation in Matlab

with double precision turns out to be unstable, and the two sequences diverge.
In this talk we will show that, given n > 1, the vector of modified mo-

ments
[
M(1)

0 ,M(1)
1 , . . . ,M(1)

n

]T
is the solution of a matrix equation involving

totally nonnegative matrices. Therefore, these moments can be computed to
high relative accuracy.

The case i = 2, i.e., the Pollaczek–Hermite weight, can be handled in
a similar way, choosing the orthonormal Hermite polynomials {Hℓ(x)}∞j=0 as

{p̃ℓ(x)}∞ℓ=0 for computing the corresponding modified moments.
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Abstract

The shift technique is a method to accelerate iterations to solve a vast family
of matrix equations. In this talk we focus on nonsymmetric algebraic Riccati
equations

XBX −XA−DX − C = 0, (1)

with the additional property that

M =

[
A −B
C D

]
∈ R(m+n)×(m+n)

is an M-matrix. Such equations appear most notably in probability applications
related to so-called fluid queue models. For these equations, the structured
doubling algorithm generates sequences Ek, Fk, Gk, Hk of nonnegative matrices,
such thatHk converges to the minimal solution of (1) in an entrywise-monotonic
fashion. It can be proved that the algorithm is forward-stable in an entrywise
fashion, i.e., for sufficiently large k one has |X − Hk|ij ≤ (Hk)ijO(u), where
O(u) stands for a moderate multiple of the machine precision.

Applying the shift technique corresponds to replacing M with a rank-1 mod-
ification M̂ = M = ηvpT , with v, p,∈ Rm+n and η > 0, and following the same
procedure to generate a different sequence Êk, F̂k, Ĝk, Ĥk. Carrying out the
shift technique in a way that preserves the entrywise stability is not obvious, as
M̂ does not have the same sign structure as M .

We show that one can perform the operations in a different order, first
computing the matrix of (unshifted) initial values

P0 =

[
E0 G0

H0 F0

]

and then recovering its analogue P̂0 via a rank-1 modification. This route pre-
serves better the sign structure, and allows one to carry out a detailed forward
error analysis.

Acknowledgements: Work partially supported by INDAM/GNCS and project
PRA 2020 61 of the university of Pisa.
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Abstract

Given the matrix equation AX + XB + f(X)C = D in the unknown
n×m matrix X, we analyze existence and uniqueness conditions, together with
computational solution strategies for f : Rn×m → R being a linear or nonlinear
function. We characterize different properties of the matrix equation and of
its solution, depending on the considered classes of functions f . Our analysis
mainly concerns small dimensional problems, though several considerations also
apply to large scale matrix equations.

This work is based on the article [1].
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Abstract

There has been a flurry of activity in recent years in the area of solution of
matrix equations. In particular, a good understanding has been reached on how
to approach the solution of large scale Lyapunov equations. An effective way to
solve Lyapunov equations of the form ATX +XA+ CTC = 0, where A and X
are n × n, is to use Galerkin projection with appropriate extended or rational
Krylov subspaces. These methods work in part because the solution is known
to be symmetric positive definite with rapidly decreasing singular values, and
therefore it can be approximated by a low rank matrix Xk = ZkZ

T
k . Thus the

computations are performed usually with storage which is lower rank, i.e., much
lower than order of n2.

Generalized Lyapunov equations have additional terms. In this talk, we
concentrate on equations of the following form

ATX +XA+
m∑
j=1

NjXNT
j + CTC = 0,

Such equations arise for example in stochastic control.
In the present work, we propose a return to classical iterative methods, and

consider instead stationary iterations. The classical theory of splittings applies
here, and we present a new theorem on the convervegence when the linear system
at each step is solved inexactly.

Several theoretical and computational issues are discussed so as to make the
iteration efficient. Numerical experiments indicate that this method is compet-
itive vis-à-vis the current state-of-the-art methods, both in terms of computa-
tional times and storage needs.
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Abstract

In this talk we discuss a procedure to apply balanced truncation to parameter-
dependent differential-algebraic systems. For this the solutions of multiple pro-
jected Lyapunov equations for different parameter values are required for the
truncation procedure. As this process would lead to high computational costs if
we perform it for a large number of parameters, we combine this approach with
the reduced basis method that determines a reduced representation of the Lya-
punov equation solutions within the desired parameter domain. Residual-based
error estimators are then used to evaluate the quality of the approximations. Af-
ter introducing the procedure for a general class of differential-algebraic systems
we turn our focus to systems with a certain structure, for which the method
can be applied particularly efficiently. We illustrate the effectiveness of our ap-
proach on several models from fluid dynamics and mechanics. The results are
available in [1].
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Clark measures associated with RIFs
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Abstract

In this talk we introduce and discuss Clark measures associated with rational
inner functions (RIFs) on the polydisk. In particular we discuss general two-
variable RIFs, including those with singularities, and general d-variable rational
inner functions with no singularities. We give precise descriptions of support sets
and weights for such Clark measures in terms of level sets and partial derivatives
of the associated RIF.

The talk is based on joint work with John T. Anderson, Kelly Bickel, Joseph
A. Cima, and Alan A. Sola.
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Raúl E. Curto1 and Seonguk Yoo2

1 Department of Mathematics, The University of Iowa, United States

E-mail: raul-curto@uiowa.edu
2 Department of Mathematics Education and RINS, Gyeongsang National University,

Republic of Korea

E-mail: seyoo@gnu.ac.kr

Abstract

For n ∈ N, we consider the algebraic variety V obtained by intersecting n+1
algebraic curves of degree n in R

2, when the leading terms of the associated
bivariate polynomials are all different. We provide a new proof, based on the
Flat Extension Theorem from the theory of truncated moment problems, that
the cardinality of V cannot exceed

(
n+1
2

)
. In some instances, this provides a

slightly better estimate than the one given by Bézout’s Theorem. Our main
result contributes to the growing literature on the interplay between linear al-
gebra, operator theory, and real algebraic geometry.
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Abstract

Matrix convexity generalizes convexity to the dimension free setting and
has connections to many mathematical and applied pursuits including operator
theory, quantum information, noncommutative optimization, and linear control
systems. In the setting of classical convex sets, extreme points are central
objects which exhibit many important properties. For example, the well-known
Minkowski theorem shows that any element of a closed bounded convex set
can be expressed as a convex combination of extreme points. Extreme points
are also of great interest in the dimension free setting of matrix convex sets;
however, here the situation requires more nuance.

In the dimension free setting, there are many different types of extreme
points. Of particular importance are free extreme points, a highly restricted
type of extreme point that is closely connected to the dilation theoretic Arveson
boundary. If free extreme points span a matrix convex set through matrix
convex combinations, then they satisfy a strong notion of minimality in doing
so. However, not all closed bounded matrix convex sets even have free extreme
points. Thus, a major goal is to determine which matrix convex sets are spanned
by their free extreme points.

Building on a recent work of J. W. Helton and the speaker [1] which shows
that free spectrahedra, i.e., dimension free solution sets to linear matrix in-
equalities, are spanned by their free extreme points, this talk establishes two
additional classes of matrix convex sets which are the matrix convex hull of
their free extreme points. Namely, we show that closed bounded free spectrahe-
drops, i.e, closed bounded projections of free spectrahedra, are the span of their
free extreme points. Furthermore, we show that if one considers linear opera-
tor inequalities that have compact operator defining tuples, then the resulting
“generalized” free spectrahedra are spanned by their free extreme points.
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Abstract

Gau and Wu studied compressions of the shift operator and showed that they
have a Poncelet-like property; that is the numerical range of such a curve has the
property that it is inscribed in a closed convex polygon that is itself inscribed
in the unit circle. At the same time, Boris Mirman considered what he called
UB-matrices, or matrices for which the addition of a (certain) column and row
dilates it to a unitary matrix. Mirman also showed that the numerical range of
such a matrix has the Poncelet property. These two results are the same, but
they were developed quite differently. Later, complex function theory began to
play an important role when it was shown that the vertices of the polygon can
be obtained using Blaschke products. Thinking of the circumscribing polygon
as joining lines between consecutive points, Mirman considered what he called
“Poncelet packages of curves”, or curves that are obtained from (possibly non-
convex) polygons that result by drawing lines that skip over points. Our talk
will begin by considering this history and major consequences of each viewpoint.
We then discuss how a package of curves also makes sense for a general matrix.
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Hankel forms over a free monoid
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Abstract

We discuss analytic aspects (boundedness, etc.) of Hankel forms defined
over a free monoid, from the point of view of nc function theory. In particular
we investigate the success and failure of various ways of generalizing the Nehari
theorem in this setting. The problem is motivated by applications to weighted
finite automota (WFA).
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Abstract

This talk will present a solution to the two-sided version and provide a
counterexample to the general version of the 2003 conjecture by Hadwin and
Larson [HL2003]. Consider evaluations of linear matrix pencils

L = T0 + x1T1 + · · ·+ xmTm

on matrix tuples as

L(X1, . . . , Xm) = I ⊗ T0 +X1 ⊗ T1 + · · ·+Xm ⊗ Tm.

It will be shown that ranks of linear matrix pencils constitute a collection of
separating invariants for simultaneous similarity of matrix tuples. That is, m-
tuples A and B of n× n matrices are simultaneously similar if and only if

rkL(A) = rkL(B)

for all linear matrix pencils L of size mn. Time permitting, variants of this
property will also be established for symplectic, orthogonal, unitary similarity,
and for the left-right action of general linear groups. Furthermore, a polynomial
time algorithm for orbit equivalence of matrix tuples under the left-right action
of special linear groups will be deduced.
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Research Agency grants J1-2453, N1-0217, J1-3004 and P1-0222. VM was sup-
ported by the University of Melbourne and the National Science Foundation
grant CCF-1900460. JV was supported by the National Science Foundation
grant DMS-1954709 and the Slovenian Research Agency grant J1-3004.
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Abstract

Semidefinite programming is a generalization of linear programming whose
feasible sets are called spectrahedral shadows. These are convex semialgebraic
sets that (are the image under an affine linear map of a set that) can be de-
scribed by symmetric linear matrix inequalities. [4] asked whether every convex
semialgebraic set is a spectrahedral shadow. Later [3] conjectured that the an-
swer to this question is in fact yes. This conjecture was recently disproved by
[5]. Further counter-examples were subsequently given by [2] and [1]. How-
ever, the techniques used in these articles were essentially the same as the ones
developed by [5]. In a joint work with Manuel Bodirsky and Andreas Thom
we provide new techniques for proving that a certain semialgebraic set is not
a spectrahedral shadow. We use these to prove that the set of all copositive
matrices of size m, i.e. the cone of all symmetric m×m matrices A such that
xtAx ≥ 0 for all x ∈ Rm

≥0, is not a spectrahedral shadow whenever m ≥ 5.

Acknowledgements: Work (partially) supported by DFG grant 421473641.
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Abstract

A bounded analytic function in the complex unit disk is inner if it has
unimodular non-tangential boundary values (almost everywhere) on the unit
circle (with respect to Lebesgue measure). Equivalently, an analytic function,
h, in the disk, is inner if multiplication by h defines an isometry on the Hardy
space of square–summable Taylor series in the complex unit disk.

A natural multivariate and non-commutative generalization of the Hardy
space is then the full Fock space, or free Hardy space of square–summable power
series in several non-commuting variables. We will completely characterize the
minimal realization formulas of non-commutative rational inner multipliers of
the free Hardy space and describe some applications.
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Abstract

An important result in real algebraic geometry is the projection theorem: every
projection of a semialgebraic set is again semialgebraic. This theorem and some
of its conclusions lie at the basis of many other results, for example the decid-
ability of the theory of real closed fields, and almost all Positivstellensätze. We
explain to which extend a projection theorem is possible for non-commutative
(=free) semialgebraic sets. First we review and extend some results that count
against a full free projection theorem. For example, it is undecidable whether
a free statement holds for all matrices of at least one size. We then explain a
weaker version of the projection theorem: projections along linear and separated
variables yields a semi-algebraically parametrized free semi-algebraic set. This
is joint work with Tom Drescher and Andreas Thom.
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Abstract This talk will present be a survey, along with some new results,
about the classical Cesàro matrix. Topics to be discussed are the norm,
spectrum, commutant (known) along with the square roots and invariant

subspaces (new).
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Abstract

An n-variate homogeneous polynomial (or form) over R is positive semidefi-
nite, if it takes nonnegative values on Rn. The set of such forms of degree 2d is a
convex cone denoted by Pn,2d. In general, checking membership in Pn,2d is diffi-
cult, therefore one often considers membership in appropriate convex subcones.
On the one hand, the sums of squares cone Σn,2d has a long history in Mathe-
matics, with results going back to Hilbert’s seminal work in [3]. On the other
hand, the sums of nonnegative circuits cone Cn,2d is rather newly established,
first formally defined in [4].

In this talk, we introduce all three cones and show how they can be set-
theoretically separated from each other. Further, motivated by [2], we study the
convex hull of Σn,2d∪Cn,2d, i.e. the Minkowski sum (Σ+C)n,2d := Σn,2d+Cn,2d.
Due to a result in [1], (Σ + C)n,2d is a proper subcone of Pn,2d if and only if
n ≥ 3, 2d ≥ 4 and (n, 2d) �= (3, 4). For those n, 2d, we add explicit forms that
separate Pn,2d from (Σ + C)n,2d and (Σ + C)n,2d from Σn,2d ∪ Cn,2d.
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[3] D. Hilbert. Über die Darstellung definiter Formen als Summe von Formen-
quadraten. Mathematische Annalen, 32:342-250, 1888.

[4] S. Iliman and T. de Wolff, Amoebas, nonnegative polynomials and sums of
squares supported on circuits. Res. Math. Sci., 3, 2016. 3:9.



25th Conference of the International Linear Algebra Society (ILAS 2023)

Madrid, Spain, 12-16 June 2023	 751
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Abstract

In an article by Ye and Lim [1], it is shown that every n× n matrix can be
factorized as the product of at most 2n+ 5 Toeplitz matrices. It is also shown
there that generic matrices have a better behavior (⌊n

2 ⌋+1) and it is conjectured
that the generic bound is actually always true. We show a counterexample to
this conjecture.

Acknowledgements: Work supported by the Agencia Estatal de Investi-
gación, Spain, through Ramón y Cajal grant RYC2021-034744-I; and through
grant PID2019-106433GB-I00/AEI/10.13039/501100011033.
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Facial structure of matrix convex sets
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Abstract

In this talk we discuss the notions of exposed points and (exposed) faces
in the matrix convex setting. Matrix exposed points in finite dimensions were
first defined by Kriel in 2019. We show how this notion can be extended to
matrix convex sets in infinite-dimensional vector spaces and present a connection
between matrix exposed points and matrix extreme points: a matrix extreme
point is ordinary exposed if and only if it is matrix exposed. This leads to a
Krein-Milman type result for matrix exposed points that is due to Straszewicz-
Klee in classical convexity: a compact matrix convex set is the closed matrix
convex hull of its matrix exposed points. At the end we discuss matrix exposed
points of spectrahedra as well as of matrix state spaces of C∗-algebras.

We introduce several notions of a fixed-level as well as a multicomponent ma-
trix face and matrix exposed face to extend the concepts of a matrix extreme
point and a matrix exposed point, respectively. Their properties resemble those
of (exposed) faces in the classical sense and they give rise to the noncommutative
counterpart of the classical theory connecting (archimedean) faces of compact
convex sets and (archimedean) order ideals of the corresponding function sys-
tems.

Acknowledgements: Work partially supported by the ARRS young research
program.
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Contractive realizations of rational
functions on polynomially defined

domains and contractive determinantal
representations of stable polynomials

Victor Vinnikov1
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Abstract

I will discuss polynomials that are stable (i.e., have no zeroes) on a tubular
domain in Cn and determinantal representations that certify their positivity,
with a special attention to the poly-upper halfplane {(z1, . . . , zn) : ℑzj > 0, j =
1, . . . , n} (and more generally tubular domains over a homogeneous cone in Rn).
One way to construct such determinantal representations is by using contractive
realizations of rational functions on the domain (or on a bounded realization
thereof) that can be constructed using appropriate hermitian sum of squares
decompositions (similar to the Positivstellensätze in real algebraic geometry)
and the “lurking contraction” argument of multivariable operator theory.

This talk is based on joint work with Hugo Woerdeman.
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Positivity of state polynomials with
applications
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4 Department of Mathematics, Drexel University, Pennsylvania
E-mail: wangjie212@amss.ac.cn

Abstract

This talk addresses state polynomials, i.e., polynomials in noncommuting
variables and formal states of their products. The arising theory mirrors and
employs the techniques from both the commutative and the noncommutative
aspects of these objects. A state analog of Artin’s solution to Hilbert’s 17th
problem is proved showing that state polynomials, positive over all matrices and
matricial states, are sums of squares with denominators. Further, archimedean
Positivstellensätze in the spirit of Putinar and Helton-McCullough are presented
leading to a hierarchy of semidefinite relaxations converging monotonically to
the optimum of a state polynomial subject to state constraints. This hierar-
chy can be seen as a state analog of the Lasserre hierarchy for optimization of
polynomials, and the Navascués-Pironio-Aćın scheme for optimization of non-
commutative polynomials. The motivation behind this theory arises from the
study of polynomial Bell inequalities and their quantum violations in quantum
networks.
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