#### SNP calling vs. sequencing coverage

Cost-effective approaches for variant calling and analysis in complex plants

**JOSE DE VEGA** 

jose.devega@earlham.ac.uk

f 🎔 🖇 in 🛗 🗟 🗔



**Decoding Living Systems** 



#### http://www.earlham.ac.uk/science-strategy

Bringing together multi-disciplinary expertise in living systems with computational science and biotechnology to answer ambitious biological questions and generate enabling resources.

Four UK National capabilities







# Types of genomic variation







Alkan et al. (2011) Nature Rev Genet 12: 363-376

### The basic workflow...



EMBL-EBI

- Align reads to the reference
- Check for differences



## Sources of errors...

- Align reads to the reference Check for differences
  - Reads are short (less every day)
  - Genomes are repetitive •

- - Sequencing introduces errors
  - Rare alleles

. AGGCTTAGCTAGGCAATGCGGTTTAAAT .

TTAGCCAGGCAATTCGGTTTAAAT **CTTAGCCAGGCAATGCGGTTTAAAT CTTAGCCAGGCAATTCGGTTTAAA** GCTTAGCCAGGCAATTCGGTTTAA GCTTAGCCAGGCAATGCGGTTTAA GGCTTAGCCAGGCAATGCGGTTTA AGGCTTAGCCAGGCAATTCGGTTTA AGGCTTAGCCAGGCAATGCGGTTT AGGCTTAGCCAGGCAATTCGGTT

 $G \rightarrow G/T$ 

 $T \rightarrow C$ 

**Sequencing error or Rare allele?** 

#### Sources of false positives (1 of 3): bad mapping

- Reads mapped to somewhere other than their true origin (e.g. recently duplicated genes)
- Accounts for approx. 40% of false positives
- Symptoms:
  - locations are heterozygous
  - several of these very close together
  - two or more clearly distinguishable classes of reads with variants in phase
  - difficult to distinguish from genuine haplotypes
- Remediation: good mapping tool with appropriate means of suppressing mismapping (e.g. Bowtie/Bowtie2)



#### Sources of false positives (2 of 3): reference assembling errors

#### • Symptoms:

- With the strict mapping of single samples, some SNPs are apparently homozygous
- In the relaxed mapping, reads appear with many mismatches that have the genome allele



# Implies *misassembly* of the reference

 Assembler has likely produced a faulty sequence from two set of reads from pairs of paralogs

Agnieszka Golicz Antonio Ribeiro

# 

#### **Relaxed mapping**

#### Sources of false positives (3/3): Illumina sequencing errors

- Sequencing error in Illumina data in GGC motifs
  - GGC motifs inhibit DNA polymerase -inverted repeats lead to folding of sequenced DNA strand
  - Both blocks base incorporation and leads to dephasing of signal in cluster





#### Sources of false positives (3/3): Illumina (minor) sequencing errors

- Sequencer image analysis error: Multiple identical reads are called from what should be a single cluster in flow cell
- Symptom: clusters of identical sequences with identical start/end positions and read error in same position across all reads
- Remediation: remove identical duplicates (also remove PCR duplicates in WGS, but not in GBS/RADSeq)





# Coverage is key to reliable SNPs

15

Depth at SNV position

20

- Coverage = times a given region has been sequenced
- Trace-off with cost
- Risk of not sampling all chromosomal regions
- To reliably call genotypes we need good coverage

1.0

0.8

0.6

0.4

0.2

0.0

5

Heterozygous SNP sensitivity





#### Meynert et al. BMC Bioinformatics 2014, 15:247

# Minimum coverage

Depends on technique



Meynert et al.. BMC Bioinformatics 2014, 15:247

Depends on reads length



Figure 1-2-2 Genome coverage of the assembled consensus sequence and the accuracy of SNP detection as a function of sequencing depth

http://www.genomics.hk/PlantWhole.htm





Clevenger et al (2015) Molecular Plant 8, 831–846

### Genome reduced-representations Increase coverage in specific loci

#### **Enzymatic (Single or double)**

- GBS, RAD-Seq
- Keygene Patent (March 2016) SBG

#### Homology

- Capture (Exon)
- rAmpSeq
- DArTseq



Genome reduced-representations Increase coverage in specific loci

#### **Enzymatic (Single or double)**

- GBS, RAD-Seq
- Keygene Patent (March 2016) SBG



### Genome reduced-representations Increase coverage in specific loci

#### Homology

- Capture (Exon)
- rAmpSeq
- DArTseq



http://www.diversityarrays.com/dart-application-microarray-process-complexity-reduction



# Exon capture

- Most functionally understood regions
- Capture reaction is a bottleneck





Clark et al 2011 Nat Biotech 29 (10): 907

#### Cost per Raw Megabase of DNA Sequence



# Why whole-genome?

- Uniform of read coverage and more balanced allele ratio calls
- Sequencing costs (But still an issue for population/cohorts analysis)
- Rare/structural variants discovery
- "This is it!" / "The time has come" ...



Meynert et al.. BMC Bioinformatics 2014, 15:247



# Rare alleles

Very rare alleles are difficult to discover...



#### ...and have functional genetic impact



- High-coverage
- Find rarer variants if new samples are sequenced (cohort dependency)
- Difficult to impute (population specific)
- Defined fine characteristics of SVs, CNVs and HLA types in a population



#### Pool-seq AFs are reliable



#### Effect of sequencing coverage

on the accuracy of the Pool-Seq in Arabidopsis haller



# Cost-effective WGS?

- Automatized sample barcoding before pooling (LITE)
  - Normal distribution of coverage-per-sample (How low can we go?)
- Exploit population features (kinship, WGD)
  - "Population power" (as in Pool-Seq)
  - Different bioinformatic pipeline for rare alleles (Low MAF)



## Nanopore sequencing

current (pA)

С

G

в





AND A

A

time (ms)

when

С

Т





# Acknowledges...

- *"Crop Genomics and Diversity":* Paul Bailey, Jon Wright, Kirstie, Ji Zhou, Ned Peel, Gonzalo Garcia, Ricardo Ramirez, Bernardo Clavijo, *Office 202*.
- Federica Di Palma, Anthony Hall, Sarah Ayling
- P&P, project managers, EI's Faculty
- IBERS
  - Leif Skot, Charlotte Jones, Kerrie Farar, Sarah Purdy, Ian Armstead, Narcis Fernandez, Iain Donnison...
- CIAT and U. Yale
  - Joe Tohme, Margaret Worthington, Stephen Dellaporta...

# And you all for your time...











Decoding Living Systems

www.earlham.ac.uk



**3 BRIDGE** COLOMBIA www.bridgecolombia.org

Earlhann linstitute